V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Plocha

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 3 mezilehlé verze.)
Řádka 1: Řádka 1:
-
{{Wikipedia-cs|Plocha|700}}
+
'''Plocha''' označuje v matematice a fyzice dvojrozměrný [[geometrický útvar]]. Příkladem ploch jsou [[rovina]], [[Sféra (matematika)|kulová plocha]], povrch [[válec|válce]] nebo [[kuželová plocha]]. Přesné matematické definice se v různých kontextech a v různých teoriích liší.
-
 
+
 
-
[[Kategorie:Geometrie]]
+
Výraz plocha se někdy nesprávně používá nejen pro označení [[geometrický útvar|geometrického útvaru]], ale také pro označení [[obsah]]u geometrického útvaru.
 +
 
 +
== Plochy v euklidovském prostoru ==
 +
 
 +
V dalším předpokládejme, že plocha je podmnožina třírozměrného [[Eukleidovský prostor|euklidovského prostoru]]. Můžeme ji definovat jako [[množina|množinu]] všech [[bod]]ů, jejichž [[souřadnice]] vyhovují [[rovnice|rovnici]]
 +
:<big>\(F(x,y,z)=0\)</big>,
 +
kde <big>\(F\)</big> je [[funkce (matematika)|funkce]], která má v každém bodě [[spojitost|spojitou]] [[parciální derivace|parciální derivaci]] alespoň prvního řádu a na žádné otevřené množině není identicky rovna nule.
 +
 
 +
Body plochy, v nichž je alespoň jedna z těchto parciálních derivací nenulová, se nazývají ''[[regulární bod]]y'' plochy, zatímco body, v nichž jsou všechny parciální derivace prvního řádu [[nula|nulové]] označujeme jako ''[[singulární bod]]y''. Příkladem singulárního bodu je např. vrchol [[kužel]]e.
 +
 
 +
Singulární bod, v němž funkce <big>\(F\)</big> má alespoň jednu nenulovou parciální derivaci druhého řádu, se nazývá ''kónický bod'' plochy.
 +
 
 +
Plocha určená svojí [[normála plochy|normálou]] se označuje jako '''orientovaná plocha'''.
 +
 
 +
Rovnici plochy lze vyjádřit v různých tvarech.
 +
 
 +
=== Implicitní rovnice plochy ===
 +
Implicitní rovnice plochy má tvar
 +
:<big>\(F(x,y,z)=0\)</big>
 +
 
 +
=== Parametrické rovnice ===
 +
Uvažujme plochu, jejíž souřadnice jsou vyjádřeny [[soustava rovnic|soustavou rovnic]]
 +
:<big>\(x=x(u,v)\)</big>
 +
:<big>\(y=y(u,v)\)</big>
 +
:<big>\(z=z(u,v)\)</big>
 +
Tato soustava rovnic představuje [[parametrická funkce|parametrické]] vyjádření plochy, přičemž <big>\(u, v\)</big> jsou parametry plochy. Každou dvojici <big>\(u, v\)</big> z určitého oboru <big>\(\Omega\)</big> nazýváme [[bod]]em plochy. Předpokládáme přitom, že tyto rovnice jsou na <big>\(\Omega\)</big> spojité a mají spojité nebo po částech spojité parciální derivace prvního řádu podle <big>\(u\)</big> a <big>\(v\)</big>.
 +
 
 +
=== Explicitní rovnice plochy ===
 +
Pokud lze předchozí rovnice plochy převést na tvar
 +
:<big>\(z=f(x,y)\)</big>,
 +
pak hovoříme o explicitní rovnici plochy.
 +
 
 +
== Základní rovnice plochy ==
 +
Vztahy mezi [[normála|normálou]] plochy <big>\(\mathbf{n}\)</big>, [[rádiusvektor]]em <big>\(\mathbf{r}\)</big> a jejich [[derivace]]mi určují tzv. ''základní rovnice plochy''. Tyto [[rovnice]] lze pro plochu určenou <big>\(\mathbf{r}=\mathbf{r}(u,v)\)</big> uvést v různých tvarech.
 +
 
 +
{{Upravit}}
 +
=== Weingartenovy rovnice plochy ===
 +
'''Weingartenovy rovnice plochy''' určují vztahy mezi [[derivace]]mi [[vektor]]ů <big>\(\mathbf{n}\)</big> a <big>\(\mathbf{r}\)</big>.
 +
:<big>\(\frac{\part\mathbf{n}}{\part u} = \frac{FM-GL}{EG-F^2}\frac{\part\mathbf{r}}{\part u} + \frac{FL-EM}{EG-F^2}\frac{\part\mathbf{r}}{\part v}\)</big>
 +
:<big>\(\frac{\part\mathbf{n}}{\part v} = \frac{FN-GM}{EG-F^2}\frac{\part\mathbf{r}}{\part u} + \frac{FM-EN}{EG-F^2}\frac{\part\mathbf{r}}{\part v}\)</big>
 +
:
 +
:<big>\(\frac{\part\mathbf{r}}{\part u} = \frac{MF-NE}{LN-M^2}\frac{\part\mathbf{n}}{\part u} + \frac{ME-LF}{LN-M^2}\frac{\part\mathbf{n}}{\part v}\)</big>
 +
:<big>\(\frac{\part\mathbf{r}}{\part v} = \frac{MG-NF}{LN-M^2}\frac{\part\mathbf{n}}{\part u} + \frac{MF-LG}{LN-M^2}\frac{\part\mathbf{n}}{\part v}\)</big>
 +
kde <big>\(E, F, G\)</big> jsou [[základní veličina plochy|základní veličiny plochy prvního řádu]] a <big>\(L, M, N\)</big> jsou [[základní veličina plochy|základní veličiny plochy druhého řádu]].
 +
 
 +
=== Gaussovy rovnice plochy ===
 +
'''Gaussovy rovnice plochy''' umožňují určit druhou derivaci [[polohový vektor|polohového vektoru]] <big>\(\mathbf{r}\)</big>.
 +
:<big>\(\frac{\part^2\mathbf{r}}{\part u^2} = \frac{G\frac{\part E}{\part u} - 2F\frac{\part F}{\part u} + F\frac{\part E}{\part v}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part u} + \frac{-F\frac{\part E}{\part u} + 2E\frac{\part F}{\part u} - E\frac{\part E}{\part v}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part v} + L\mathbf{n}\)</big>
 +
:<big>\(\frac{\part^2\mathbf{r}}{\part u\part v} = \frac{G\frac{\part E}{\part v} - F\frac{\part G}{\part u}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part u} + \frac{E\frac{\part G}{\part u} - F\frac{\part E}{\part v}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part v} + M\mathbf{n}\)</big>
 +
:<big>\(\frac{\part^2\mathbf{r}}{\part v^2} = \frac{-F\frac{\part G}{\part v} + 2G\frac{\part F}{\part v} - G\frac{\part G}{\part u}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part u} + \frac{E\frac{\part G}{\part v} - 2F\frac{\part F}{\part v} + F\frac{\part G}{\part u}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part v} + N\mathbf{n}\)</big>
 +
kde <big>\(E, F, G\)</big> jsou [[základní veličina plochy|základní veličiny plochy prvního řádu]] a <big>\(L, M, N\)</big> jsou [[základní veličina plochy|základní veličiny plochy druhého řádu]].
 +
 
 +
=== Codazziho rovnice plochy ===
 +
'''Codazziho''' (nebo také '''Mainardiho''') '''rovnice plochy''' určují vztahy mezi [[základní veličina plochy|základními veličinami plochy prvního řádu]] <big>\(E, F, G\)</big> a [[základní veličina plochy|základními veličinami plochy druhého řádu]] <big>\(L, M, N\)</big>.
 +
:<big>\((EG-2F^2+GE)\left(\frac{\part L}{\part v} - \frac{\part M}{\part u}\right) - (EN-2FM+GL)\left(\frac{\part E}{\part v} - \frac{\part F}{\part u}\right) + \begin{vmatrix} E & \frac{\part E}{\part u} & L \\ F & \frac{\part F}{\part u} & M \\ G & \frac{\part G}{\part u} & N \end{vmatrix} = 0\)</big>
 +
:<big>\((EG-2F^2+GE)\left(\frac{\part M}{\part v} - \frac{\part N}{\part u}\right) - (EN-2FM+GL)\left(\frac{\part F}{\part v} - \frac{\part G}{\part u}\right) + \begin{vmatrix} E & \frac{\part E}{\part v} & L \\ F & \frac{\part F}{\part v} & M \\ G & \frac{\part G}{\part v} & N \end{vmatrix} = 0\)</big>
 +
 
 +
== Vlastnosti ==
 +
* Zavedeme [[matice|matici]]  
 +
:<big>\(\begin{pmatrix} \frac{\part x}{\part u} & \frac{\part y}{\part u} & \frac{\part z}{\part u} \\ \frac{\part x}{\part v} & \frac{\part y}{\part v} & \frac{\part z}{\part v} \end{pmatrix}\)</big>
 +
Body plochy, v nichž má tato matice [[hodnost matice|hodnost]] <big>\(h=2\)</big> jsou regulárními body. Je-li hodnost matice <big>\(h<2\)</big>, pak jde o singulární body.
 +
 
 +
* Máme-li plochu zadanou rovnicemi, které mají všude v <big>\(\Omega\)</big> nenulovou parciální derivaci prvního řádu a uvedená matice má v každém bodě hodnost <big>\(h=2\)</big>, pak plochu označujeme jako '''hladkou'''.
 +
 
 +
== Související články ==
 +
* [[Prostorové geometrické útvary]]
 +
* [[Přímková plocha]]
 +
* [[Kvadrika|Kvadratická plocha]]
 +
* [[Kuželová plocha]]
 +
* [[Válcová plocha]]
 +
* [[Obsah]]
 +
 
 +
== Externí odkazy ==
 +
 
 +
 
 +
{{Článek z Wikipedie}}
[[Kategorie:Prostorové geometrické útvary]]
[[Kategorie:Prostorové geometrické útvary]]

Aktuální verze z 14. 8. 2022, 14:53

Plocha označuje v matematice a fyzice dvojrozměrný geometrický útvar. Příkladem ploch jsou rovina, kulová plocha, povrch válce nebo kuželová plocha. Přesné matematické definice se v různých kontextech a v různých teoriích liší.

Výraz plocha se někdy nesprávně používá nejen pro označení geometrického útvaru, ale také pro označení obsahu geometrického útvaru.

Obsah

Plochy v euklidovském prostoru

V dalším předpokládejme, že plocha je podmnožina třírozměrného euklidovského prostoru. Můžeme ji definovat jako množinu všech bodů, jejichž souřadnice vyhovují rovnici

\(F(x,y,z)=0\),

kde \(F\) je funkce, která má v každém bodě spojitou parciální derivaci alespoň prvního řádu a na žádné otevřené množině není identicky rovna nule.

Body plochy, v nichž je alespoň jedna z těchto parciálních derivací nenulová, se nazývají regulární body plochy, zatímco body, v nichž jsou všechny parciální derivace prvního řádu nulové označujeme jako singulární body. Příkladem singulárního bodu je např. vrchol kužele.

Singulární bod, v němž funkce \(F\) má alespoň jednu nenulovou parciální derivaci druhého řádu, se nazývá kónický bod plochy.

Plocha určená svojí normálou se označuje jako orientovaná plocha.

Rovnici plochy lze vyjádřit v různých tvarech.

Implicitní rovnice plochy

Implicitní rovnice plochy má tvar

\(F(x,y,z)=0\)

Parametrické rovnice

Uvažujme plochu, jejíž souřadnice jsou vyjádřeny soustavou rovnic

\(x=x(u,v)\)
\(y=y(u,v)\)
\(z=z(u,v)\)

Tato soustava rovnic představuje parametrické vyjádření plochy, přičemž \(u, v\) jsou parametry plochy. Každou dvojici \(u, v\) z určitého oboru \(\Omega\) nazýváme bodem plochy. Předpokládáme přitom, že tyto rovnice jsou na \(\Omega\) spojité a mají spojité nebo po částech spojité parciální derivace prvního řádu podle \(u\) a \(v\).

Explicitní rovnice plochy

Pokud lze předchozí rovnice plochy převést na tvar

\(z=f(x,y)\),

pak hovoříme o explicitní rovnici plochy.

Základní rovnice plochy

Vztahy mezi normálou plochy \(\mathbf{n}\), rádiusvektorem \(\mathbf{r}\) a jejich derivacemi určují tzv. základní rovnice plochy. Tyto rovnice lze pro plochu určenou \(\mathbf{r}=\mathbf{r}(u,v)\) uvést v různých tvarech.


Broom icon.png Tento článek potřebuje úpravy. Můžete Multimediaexpo.cz pomoci tím, že ho vylepšíte.
Jak by měly články vypadat, popisují stránky Vzhled a styl a Encyklopedický styl.
Broom icon.png

Weingartenovy rovnice plochy

Weingartenovy rovnice plochy určují vztahy mezi derivacemi vektorů \(\mathbf{n}\) a \(\mathbf{r}\).

\(\frac{\part\mathbf{n}}{\part u} = \frac{FM-GL}{EG-F^2}\frac{\part\mathbf{r}}{\part u} + \frac{FL-EM}{EG-F^2}\frac{\part\mathbf{r}}{\part v}\)
\(\frac{\part\mathbf{n}}{\part v} = \frac{FN-GM}{EG-F^2}\frac{\part\mathbf{r}}{\part u} + \frac{FM-EN}{EG-F^2}\frac{\part\mathbf{r}}{\part v}\)
\(\frac{\part\mathbf{r}}{\part u} = \frac{MF-NE}{LN-M^2}\frac{\part\mathbf{n}}{\part u} + \frac{ME-LF}{LN-M^2}\frac{\part\mathbf{n}}{\part v}\)
\(\frac{\part\mathbf{r}}{\part v} = \frac{MG-NF}{LN-M^2}\frac{\part\mathbf{n}}{\part u} + \frac{MF-LG}{LN-M^2}\frac{\part\mathbf{n}}{\part v}\)

kde \(E, F, G\) jsou základní veličiny plochy prvního řádu a \(L, M, N\) jsou základní veličiny plochy druhého řádu.

Gaussovy rovnice plochy

Gaussovy rovnice plochy umožňují určit druhou derivaci polohového vektoru \(\mathbf{r}\).

\(\frac{\part^2\mathbf{r}}{\part u^2} = \frac{G\frac{\part E}{\part u} - 2F\frac{\part F}{\part u} + F\frac{\part E}{\part v}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part u} + \frac{-F\frac{\part E}{\part u} + 2E\frac{\part F}{\part u} - E\frac{\part E}{\part v}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part v} + L\mathbf{n}\)
\(\frac{\part^2\mathbf{r}}{\part u\part v} = \frac{G\frac{\part E}{\part v} - F\frac{\part G}{\part u}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part u} + \frac{E\frac{\part G}{\part u} - F\frac{\part E}{\part v}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part v} + M\mathbf{n}\)
\(\frac{\part^2\mathbf{r}}{\part v^2} = \frac{-F\frac{\part G}{\part v} + 2G\frac{\part F}{\part v} - G\frac{\part G}{\part u}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part u} + \frac{E\frac{\part G}{\part v} - 2F\frac{\part F}{\part v} + F\frac{\part G}{\part u}}{2(EG-F^2)} \frac{\part\mathbf{r}}{\part v} + N\mathbf{n}\)

kde \(E, F, G\) jsou základní veličiny plochy prvního řádu a \(L, M, N\) jsou základní veličiny plochy druhého řádu.

Codazziho rovnice plochy

Codazziho (nebo také Mainardiho) rovnice plochy určují vztahy mezi základními veličinami plochy prvního řádu \(E, F, G\) a základními veličinami plochy druhého řádu \(L, M, N\).

\((EG-2F^2+GE)\left(\frac{\part L}{\part v} - \frac{\part M}{\part u}\right) - (EN-2FM+GL)\left(\frac{\part E}{\part v} - \frac{\part F}{\part u}\right) + \begin{vmatrix} E & \frac{\part E}{\part u} & L \\ F & \frac{\part F}{\part u} & M \\ G & \frac{\part G}{\part u} & N \end{vmatrix} = 0\)
\((EG-2F^2+GE)\left(\frac{\part M}{\part v} - \frac{\part N}{\part u}\right) - (EN-2FM+GL)\left(\frac{\part F}{\part v} - \frac{\part G}{\part u}\right) + \begin{vmatrix} E & \frac{\part E}{\part v} & L \\ F & \frac{\part F}{\part v} & M \\ G & \frac{\part G}{\part v} & N \end{vmatrix} = 0\)

Vlastnosti

\(\begin{pmatrix} \frac{\part x}{\part u} & \frac{\part y}{\part u} & \frac{\part z}{\part u} \\ \frac{\part x}{\part v} & \frac{\part y}{\part v} & \frac{\part z}{\part v} \end{pmatrix}\)

Body plochy, v nichž má tato matice hodnost \(h=2\) jsou regulárními body. Je-li hodnost matice \(h<2\), pak jde o singulární body.

  • Máme-li plochu zadanou rovnicemi, které mají všude v \(\Omega\) nenulovou parciální derivaci prvního řádu a uvedená matice má v každém bodě hodnost \(h=2\), pak plochu označujeme jako hladkou.

Související články

Externí odkazy