The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).
Sféra (matematika)
Z Multimediaexpo.cz
V matematice se slovem sféra označuje obvykle kulová plocha, tj. povrch koule, resp. prostor, který je povrchu koule (v různém smyslu) podobný. Sféra dimenze n se někdy značí n-sféra.
Definice
- V euklidovské geometrii a v klasické analýze je n-rozměrná sféra poloměru r definována \(S^n:=\{ x\in R^{n+1}, \sum_i x_i^2=r^2\}\)
- V topologii je n-rozměrná sféra topologický prostor homeomorfní výše uvedené euklidovské sféře. Ekvivalentně je sféra jednobodová kompaktifikace prostoru \(R^n\). Pro \(n=\infty\) se také definuje sféra \(S^\infty\), která je v jistém smyslu limitou konečně rozměrných sfér.
Vlastnosti
- n-sféra je kompaktní, souvislá pro dimenzi n > 0 a pro n>1 také jednoduše souvislá množina.
- Obsah (dvourozměrné euklidovské) sféry je \(4\pi r^2\), obecněji je objem (n-rozměrná míra) n-rozměrné sféry poloměru r \({2\pi^\frac{n+1}{2}\over\Gamma(\frac{n+1}{2})} r^{n}.\)
- Eulerova charakteristika n-sféry je 2 pro n sudé a 0 pro n liché.
- Homologie a kohomologie n-sféry jsou netriviální pouze v dimenzi 0 a n.
- Libovolná jednoduše souvislá uzavřená 2-rozměrná varieta je homeomorfní 2-sféře.
- Libovolná jednoduše souvislá uzavřená 3-rozměrná hladká varieta je homeomorfní 3-sféře (Poincarého hypotéza, jediný z sedmi problémů tisíciletí, který byl zatím vyřešen).
- Jediné sféry, které mají strukturu Lieovy grupy jsou n-sféry pro n = 0, 1, 3 (jsou to sféry jednotkových reálných čísel, komplexních čísel a kvaternionů).
- Jediné sféry, které jsou úplně paralelizovatelné, jsou \(S^0, S^1, S^3, S^7\) (paralelizovatelnost \(S^7\) má souvislost s oktoniony).
- Na n-sféře existuje paralelní hladké nenulové vektorové pole právě když n je liché.
- 2-sféra může mít strukturu komplexní variety
Otevřené problémy
- Homotopie sféry nejsou obecně známy.
- Maximální počet nezávislých vektorových polí na n-sféře není obecně znám.
- Počet neizomorfních diferencovatelných struktur n-sféry není obecně znám.
- Není známo, zda 6-sféra připouští strukturu komplexní variety.
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
