dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...

Funkce (matematika)
Z Multimediaexpo.cz
Funkce je v matematice název pro zobrazení z nějaké množiny M do množiny čísel (většinou reálných nebo komplexních), nebo do vektorového prostoru (pak se mluví o vektorové funkci). Je to tedy předpis, který každému prvku z množiny M jednoznačně přiřadí nějaké číslo nebo vektor (hodnotu funkce). Někdy se však slovo funkce používá pro libovolné zobrazení.
Obsah[skrýt] |
Definice
Poněkud neformální
Na množině čísel M je definovaná funkce, je-li dán předpis, podle kterého je každému x náležícímu do množiny M přiřazeno právě jedno číslo y.
Značíme:
Proměnná
M nazýváme definičním oborem funkce. Pokud není při zadání funkce uveden definiční obor, pak se za definiční obor obvykle považuje množina všech hodnot nezávisle proměnné, pro něž má funkce smysl. Definičním oborem může být například množina celých, reálných nebo komplexních čísel. Definiční obor může mít i více dimenzí. Pokud má dvě, pak můžeme říkat, že má funkce dva argumenty, nebo že jejím argumentem je jeden dvourozměrný vektor. Jedná se o dva pohledy na stejnou věc. V případě, že má vektor, který je argumentem funkce, nekonečnou dimenzi (většinou nespočetnou), nemluvíme již o funkci, ale o funkcionálu.
Množinu všech čísel
Matematicky přesnější
Funkce
Definičním oborem funkce je pak podmnožina všech prvků množiny M, ke kterým taková uspořádaná dvojice existuje právě jedna. Říkáme, že pro prvky množiny M, které nejsou prvky definičního oboru, daná funkce není definována.
Oborem hodnot dané funkce je množina všech prvků x množiny T, ke kterým v relaci existuje alespoň jedna uspořádaná dvojice
Způsoby zadání funkce
Analyticky
Analytickým předpisem rozumíme zadání funkce ve formě
Příklad
Např.
Graficky
Při grafickém zadání funkci vyjádříme grafem.
Příklad
Příklad zadání funkce grafem (
Tabulkou (výčtem hodnot)
Funkční předpis může být zadán také výčtem hodnot, který obvykle uspořádáme do tabulky.
Příklad
Příkladem může být např. zadání funkce
| 1 | 2 | 3 | 7 | 9 |
| 2 | 4 | 5 | 3 | 3 |
Definičním oborem je zde množina
Typy funkcí
Je-li nezávisle proměnná z množiny reálných čísel, pak hovoříme o funkci reálné proměnné, pokud je nezávisle proměnná z množiny komplexních čísel, hovoříme o funkci komplexní proměnné. Pokud je závislá proměnná z množiny reálných čísel, pak s jedná o reálnou funkci, je-li z množiny komplexních čísel, jde o komplexní funkci. Např. komplexní funkce reálné proměnné přiřazuje každému reálnému číslu (z definičního oboru) komplexní číslo.
Argumentem funkce nemusí být jen čísla, ale mohou jím být také matice, vektory, tenzory, apod. Pak podle typu argumentu hovoříme o maticové funkci, vektorové funkci, tenzorové funkci, apod.
O funkci obsahující jedinou nezávisle proměnnou hovoříme jako o funkci jedné proměnné, např.
-
-
pro -
, kde představuje bod v n-rozměrném prostoru -
, kde představuje polohový vektor bodu v n-rozměrném prostoru.
Algebraická a transcendentní funkce
Funkci označujeme jako algebraickou, pokud ji lze vyjádřit ve tvaru polynomu, např. pokud lze funkci
Algebraické funkce lze dále rozdělit na racionální funkce a iracionální funkce. Iracionální funkce jsou funkce obsahující
Transcendentní funkce lze rozdělit na nižší, kam patří např. exponenciální, logaritmické, goniometrické a cyklometrické funkce, a vyšší. Vyšší transcendentní funkce nelze pomocí elementárních funkcí vyjádřit v konečném tvaru.
Rekurzivní funkce
Zvláštním případem zadání funkce je tzv. rekurzivní funkce. Zadání funkce rekurentně je zadání předpisu, který dává do vztahu nějaké hodnoty funkce s jinými hodnotami takovým způsobem, že funkce je dobře definována.
Příkladem takové funkce může být např. funkce definovaná na přirozených číslech, kterou definujeme vztahy
Celý proces výpočtu rekurzivní funkce je označován jako rekurze a našel uplatnění především ve výpočetní technice.
Operace s funkcemi
Mějme funkci
Funkce
Součtem funkcí
Součinem funkcí
Podílem funkcí
Související články
- Meromorfní funkce
- Obraz funkce
- Vzor funkce
- Průběh funkce
- Inverzní funkce
- Sudé a liché funkce
- Periodická funkce
- Skládání funkcí
- Komplexní funkce
- Prostá funkce
- Spojitá funkce
- Monotónní funkce
Externí odkazy
[zobrazit] Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|