dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...

Vektorový prostor
Z Multimediaexpo.cz
Vektorový prostor (též lineární prostor) je základním objektem studia lineární algebry. Prvky vektorového prostoru se nazývají vektory. Při zavádění vektorů lze uvažovat některé operace (sčítání vektorů, násobení skalárem) společně s některými omezeními (asociativita atd.) Tím dospějeme k matematické struktuře zvané vektorový prostor.
Obsah[skrýt] |
Formální definice
Vektorový prostor nad tělesem F (např. tělesem reálných čísel nebo komplexních čísel) je množina V společně se dvěma operacemi:
- sčítání vektorů: V × V → V značeno v + w, kde v, w ∈ V
- násobení skalárem: F × V → V značeno a v, kde a ∈ F ; v ∈ V.
splňující následující axiomy (pro každé a, b ∈ F a u, v, w ∈ V):
- V společně se sčítáním vektorů tvoří komutativní grupu
- Existuje neutrální prvek 0 ∈ V tak, že pro všechna v ∈ V, v + 0 = v. Prvek 0 se nazývá nulový vektor.
- Pro všechna v ∈ V existuje opačný prvek w ∈ V tak, že v + w = 0. Vektor w bývá také označován jako opačný vektor k vektoru v a značen w = -v.
- Sčítání vektorů je asociativní: u + (v + w) = (u + v) + w.
- Sčítání vektorů je komutativní: v + w = w + v.
- Násobení skalárem je asociativní: a(b v) = (ab)v.
- 1 v = v, kde 1 je jednotkový prvek tělesa F.
- Distributivita:
- a (v + w) = a v + a w.
- (a + b) v = a v + b v.
Základní vlastnosti
Z definice vektorového prostoru lze dokázat například tyto vlastnosti:
- Nulový vektor 0 ∈ V je právě jeden.
- a 0 = 0 pro všechna a ∈ F.
- 0 v = 0 pro všechna v ∈ V kde 0 je neutrální prvek pro sčítání v F.
- a v = 0 právě tehdy, když a = 0 nebo v = 0.
- Opačný prvek vektoru v pro sčítání vektorů je unikátní. Většinou se značí −v.
- (−1)v = −v pro všechna v ∈ V.
- (−a)v = a(−v) = −(av) pro všechna a ∈ F a v ∈ V.
Příklady
- Vektorový prostor obsahující pouze nulový vektor se označuje jako nulový (nebo triviální) vektorový prostor. Triviální prostor je nejjednodušším příkladem vektorového prostoru.
- Každé těleso spolu s operací sčítání a násobení prvkem tělesa je vektorovým prostorem samo nad sebou.
- Množina Rm×n všech reálých matic typu m×n s operací sčítání matic a násobení skalárem je vektorový prostor.
- Obecně množina všech matic typu m×n nad tělesem T je vektorovým prostorem.
- Vektorový prostor nad tělesem reálných čísel R obvykle nazýváme reálným vektorovým prostorem. Obdobně lze nad tělesem komplexních čísel C vytvořit komplexní vektorový prostor.
- Množina všech polynomů s koeficienty v T tvoří spolu s obvyklými operacemi sčítání polynomů a násobení prvkem z T vektorový prostor nad T.
- Množina všech spojitých reálných funkcí definovaných na uzavřeném intervalu
, jestliže pro funkce f, g z této množiny jsou definovány operace (f+g)(x)=f(x)+g(x) a (r f)(x)=r f(x) pro x ∈ R a r ∈ R. Množina těchto funkcí tvoří reálný vektorový prostor. - Definujme pro přirozené číslo n na množině Tn všech uspořádaných n-tic prvků z množiny T binární operaci sčítání předpisem
a operaci násobení prvků z Tn prvkem z tělesa T jako .
Potom takovou množinu Tn nazýváme aritmetickým vektorovým prostorem dimenze n nad tělesem T (nebo n-rozměrným aritmetickým vektorovým prostorem nad tělesem T).
Generátory vektorového prostoru
Podmnožina M vektorového prostoru V nad tělesem T se nazývá množina generátorů prostoru V, jestliže je lineární obal této množiny roven celému prostoru V, tzn.
Související články
Externí odkazy
[zobrazit] Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|