The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Vektorový prostor

Z Multimediaexpo.cz

Vektorový prostor (též lineární prostor) je základním objektem studia lineární algebry. Prvky vektorového prostoru se nazývají vektory. Při zavádění vektorů lze uvažovat některé operace (sčítání vektorů, násobení skalárem) společně s některými omezeními (asociativita atd.) Tím dospějeme k matematické struktuře zvané vektorový prostor.

Obsah

Formální definice

Vektorový prostor nad tělesem F (např. tělesem reálných čísel nebo komplexních čísel) je množina V společně se dvěma operacemi:

  • sčítání vektorů: V × VV značeno v + w, kde v, wV
  • násobení skalárem: F × VV značeno a v, kde aF ; vV.

splňující následující axiomy (pro každé a, bF a u, v, wV):

  1. V společně se sčítáním vektorů tvoří komutativní grupu
    1. Existuje neutrální prvek 0V tak, že pro všechna vV, v + 0 = v. Prvek 0 se nazývá nulový vektor.
    2. Pro všechna v ∈ V existuje opačný prvek w ∈ V tak, že v + w = 0. Vektor w bývá také označován jako opačný vektor k vektoru v a značen w = -v.
    3. Sčítání vektorů je asociativní: u + (v + w) = (u + v) + w.
    4. Sčítání vektorů je komutativní: v + w = w + v.
  2. Násobení skalárem je asociativní: a(b v) = (ab)v.
  3. 1 v = v, kde 1 je jednotkový prvek tělesa F.
  4. Distributivita:
    1. a (v + w) = a v + a w.
    2. (a + b) v = a v + b v.

Základní vlastnosti

Z definice vektorového prostoru lze dokázat například tyto vlastnosti:

  • Nulový vektor 0V je právě jeden.
  • a 0 = 0 pro všechna aF.
  • 0 v = 0 pro všechna vV kde 0 je neutrální prvek pro sčítání v F.
  • a v = 0 právě tehdy, když a = 0 nebo v = 0.
  • Opačný prvek vektoru v pro sčítání vektorů je unikátní. Většinou se značí −v.
  • (−1)v = −v pro všechna vV.
  • (−a)v = a(−v) = −(av) pro všechna aF a vV.

Příklady

  • Vektorový prostor obsahující pouze nulový vektor se označuje jako nulový (nebo triviální) vektorový prostor. Triviální prostor je nejjednodušším příkladem vektorového prostoru.
  • Každé těleso spolu s operací sčítání a násobení prvkem tělesa je vektorovým prostorem samo nad sebou.
  • Množina Rm×n všech reálých matic typu m×n s operací sčítání matic a násobení skalárem je vektorový prostor.
  • Obecně množina všech matic typu m×n nad tělesem T je vektorovým prostorem.
  • Vektorový prostor nad tělesem reálných čísel R obvykle nazýváme reálným vektorovým prostorem. Obdobně lze nad tělesem komplexních čísel C vytvořit komplexní vektorový prostor.
  • Množina všech polynomů s koeficienty v T tvoří spolu s obvyklými operacemi sčítání polynomů a násobení prvkem z T vektorový prostor nad T.
  • Množina všech spojitých reálných funkcí definovaných na uzavřeném intervalu \(\langle a,b \rangle\), jestliže pro funkce f, g z této množiny jsou definovány operace (f+g)(x)=f(x)+g(x) a (r f)(x)=r f(x) pro xR a rR. Množina těchto funkcí tvoří reálný vektorový prostor.
  • Definujme pro přirozené číslo n na množině Tn všech uspořádaných n-tic prvků z množiny T binární operaci sčítání předpisem
    \((a_1,a_2,...,a_n) + (b_1,b_2,...,b_n) = (a_1+b_1,a_2+b_2,...,a_n+b_n)\)
    a operaci násobení prvků z Tn prvkem z tělesa T jako
    \(r(a_1,a_2,...,a_n) = (r a_1,r a_2,...,r a_n)\).
    Potom takovou množinu Tn nazýváme aritmetickým vektorovým prostorem dimenze n nad tělesem T (nebo n-rozměrným aritmetickým vektorovým prostorem nad tělesem T).

Generátory vektorového prostoru

Podmnožina M vektorového prostoru V nad tělesem T se nazývá množina generátorů prostoru V, jestliže je lineární obal této množiny roven celému prostoru V, tzn. \(\langle \mathbf{M} \rangle = V\). Říká se také, že M generuje V. Podmnožina M prostoru V generuje prostor V právě tehdy, když každý vektor z V je lineární kombinací vektorů z množiny M. Platí, že pokud je \(\{\mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_n\}\) množina generátorů prostoru V a každý z vektorů v1,v2,…,vn je lineární kombinací vektorů u1,u2,…,un, pak také \(\{\mathbf{u}_1,\mathbf{u}_2,...,\mathbf{u}_n\}\) je množinou generátorů prostoru V. Tzv. Steinitzova věta říká, že pokud máme ve vektorovém prostoru V lineárně nezávislé vektory v1, v2, …, vm a další vektory u1, u2, …, un takové, že každý vektor vi lze vyjádřit jako lineární kombinaci vektorů u1, u2, …, un, pak \(m \leq n\).

Související články

Externí odkazy