Multimediaexpo.cz je již 18 let na českém internetu !!
Ortonormální báze
Z Multimediaexpo.cz
Ortonormální báze unitárního prostoru je pojem z lineární algebry a funkcionální analýzy označující takovou bázi onoho prostoru, jež je ortogonální a jejíž prvky jsou navíc normované, tedy prvky báze jsou jednotkové a jsou na sebe kolmé.
Tento pojem je důležitý pro konečně i nekonečně rozměrné prostory a obzvláště pak pro Hilbertovy prostory.
Konečně rozměrné prostory
Nechť \(V\) je konečně rozměrný eukleidovský vektorový prostor se skalárním součinem \(\langle \cdot, \cdot \rangle\), který indukuje normu \(\|\cdot\|\). Pod ortonormální bází prostoru \(V\) pak rozumíme bázi \(B = \{b_1,\ldots,b_n\}\) z \( V \) s těmito vlastnostmi:
- \(\|b_i\| = 1\) pro všechny \(i\in\{1,\ldots,n\}\).
- \(\langle b_i, b_j \rangle = 0\) pro všechny \(i,j \in\{1,\ldots,n\}\) s \(i \neq j\).
Například následující množina je ortonormální bází euklidovského vektorového prostoru \(\mathbb{R}^3\) (spolu s přirozeně definovaným skalárním součinem).
- \(\vec i = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix},\vec j = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix},\vec k = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}\)
Každý z těchto vektorů má délku 1 a všechny jsou na sebe kolmé protože jejich skalární součin je roven nule.
Základním algoritmem pro získání ortonormální báze z libovolné báze je Gramův-Schmidtův ortogonalizační proces.
Obecný případ
V obecném případě unitárního prostoru \(V\) nekonečné dimenze, nazýváme ortonormálním systémem \( S \) ve \( V \) takový systém, jehož lineární obal leží hustě ve \( V \).
Úplný ortonormální systém \(S\) má proto tu vlastnost, že pro každý prvek \(v \in V\) můžeme psát Fourierův rozvoj:
- \(v=\sum_{u \in S} \langle v, u \rangle u \).
Je důležité zdůraznit, že ve smyslu tohoto odstavce, v protikladu k případu s konečnou dimenzí, není ortonormální báze žádnou bází v běžném smyslu lineární algebry. To znamená, že prvek \( v \) nelze obecně zapsat jako lineární kombinaci konečného počtu bázových vektorů (prvků z \( S \)), ale jen jako sumu počitatelného nekonečného počtu prvků z \( S \), tedy jako nekonečnou řadu. Jinými slovy: Lineární obal není roven prostoru \( V \), leží ale hustě v tomto prostoru.
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |