The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Rovinová souměrnost

Z Multimediaexpo.cz

Rovinová souměrnost je typ geometrického zobrazení v prostoru. Rovinová souměrnost zachovává vzdálenosti i úhly, jedná se tedy o jedno ze shodných zobrazení.

Souměrnost podle roviny nebo podle osy bývá také označována jako zrcadlení.

Obsah

Definice

Rovinová souměrnost prostoru s rovinou O jako rovinou souměrnosti je takové zobrazení, které zobrazuje prvky roviny O na sebe samé a bod A mimo rovinu O s průmětem S do roviny O na bod A', který se nachází na polopřímce opačné k SA ve stejné vzdálenosti od S jako bod A (tj. platí pro něj |SA| = |SA´|).

Objekt v prostoru označujeme za rovinově souměrný, pokud je v nějaké rovinové souměrnosti obrazem sebe sama. Rovinu této souměrnosti pak nazýváme rovinou souměrnosti objektu.

Poznámka: Pod pojmem prostor ve výše uvedené definici je obvykle myšlen klasický třírozměrný eukleidovský prostor. Definice ale stejně dobře má smysl i v obecném \(n \,\! \)-rozměrném prostoru pro \( n \geq 3 \,\! \).

Příklady

  • Krychle nebo kvádr jsou příkladem rovinově souměrného prostorového útvaru. Kvádr má tři roviny souměrnosti, krychle devět.
  • Jehlan je rovinově souměrný pouze za předpokladu, že jeho základna je osově souměrný rovinný útvar a jeho vrchol leží kolmo nad osou souměrnosti základny.
  • Koule je rovinově souměrná podle každé roviny, která obsahuje její střed souměrnosti.
  • Kužel a válec jsou rovinově souměrné podle každé roviny, která obsahuje jejich osu souměrnosti.

Vlastnosti

Rovinová souměrnost je (jako každá souměrnost) involutorní, tzn. je sama sobě inverzním zobrazením - složením dvou rovinových souměrností se stejnou rovinou souměrnosti vzniká identita.

Rovinová souměrnost je nepřímá shodnost, viz např. pohled do zrcadla. Mění v prostoru orientaci v následujícím smyslu: pokud vezmeme libovolný trojboký jehlan ABCD, ve kterém je z pohledu z bodu trojúhelník ABC orientován po směru hodinových ručiček, pak pro jeho obraz v A'B'C'D' v rovinové souměrnosti platí, že při pohledu z bodu D' je trojúhelník A'B'C' orientován proti směru hodinových ručiček (a naopak naopak).

Související články

Literatura

  • POMYKALOVÁ E. a kol., 2010: Matematika pro gymnázia - Stereometrie. Praha: Prometheus.
  • BOČEK L., KOČANDRLE M., SEKANINA M., ŠEDIVÝ J., 1980. Geometrie II. Praha: SPN.

Externí odkazy