V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Dostředivá síla

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Jiné VIDEO)
(+ VIDEO)
Řádka 39: Řádka 39:
== YouTube ==
== YouTube ==
{| border="4" width="442" align="left"
{| border="4" width="442" align="left"
-
|  {{#widget:YouTube|id=OTcdutIcEJ4}}
+
|  {{#widget:YouTube|id=jpEBCkH3CRg}}
|- align="center"
|- align="center"
-
| '''Human Loop the Loop with Damien Walters (anglicky)'''  
+
| '''Human Loop the Loop with Damien Walters'''  
|}
|}
{| border="4" width="442" align="right"
{| border="4" width="442" align="right"

Verze z 7. 7. 2020, 13:36

Dostředivá (centripetální) síla (často označovaná Fd) je síla, která má směr do středu křivosti trajektorie tělesa při křivočarém pohybu (při pohybu po kružnici do středu kružnice). Má směr normály k trajektorii v daném místě, je tedy kolmá na vektor rychlosti. Dostředivá síla způsobuje změnu směru vektoru rychlosti (dostředivé zrychlení), a tím zakřivení trajektorie, velikost vektoru rychlosti však nemění.

Vztah velikosti dostředivé síly, hmotnosti tělesa m, velikosti rychlosti tělesa v (popř. úhlové rychlosti ω) a poloměru křivosti r je

<math>F_d = \frac{m \cdot v^2}{r}</math>

nebo

<math>F_d = m \cdot r \cdot \omega^2</math>.

V otáčející se neinerciální vztažné soustavě vzniká odstředivá síla, která se často označuje jako reakce (reaktivní síla podle Třetího Newtonova zákona) k síle dostředivé. Je to však pouze síla zdánlivá a závisí na volbě vztažné soustavy.

Důkaz

Pohybuje-li se těleso (hmotný bod) po kružnici s konstantní úhlovou rychlostí ω, pak pro úhel φ úsečky spojující těleso a střed kružnice platí:

<math>\varphi(t) = \omega \cdot t</math> kde t je čas. Je-li x souřadnice tělesa v kartézském souřadném systému se středem ve středu kružnice, pak pro tuto platí:

<math>x(t) = r \cdot \cos(\varphi) = r \cdot \cos(\omega \cdot t)</math>

Víme, že složku zrychlení ve směru osy x získáme druhou derivací souřadnice x podle času:

<math>a_x(t) = \frac{\mathrm{d^2} x}{\mathrm{d}t^2}</math>

kde <math>a_x</math> je složka zrychlení tělesa ve směru osy x, tedy platí:

<math>a_x(t) = -r \cdot \omega^2 \cdot \cos(\omega \cdot t)</math>

Pro <math>\varphi = k \cdot \pi</math>, kde k= 0,1,2,…,n pak platí, že absolutní hodnota této složky zrychlení ve směru „x“ je rovna hledanému dostředivému zrychlení ad:

<math>a_d = r \cdot \omega^2</math>.

Dostředivou sílu F d pak spočítáme z Newtonova zákona:

<math>F_d = m \cdot a_d = m \cdot r \cdot \omega^2</math>

První Newtonův zákon říká že pohybující se předmět pokračuje v pohybu po přímé dráze, dokud jej nějaká síla nedonutí změnit směr

YouTube

Human Loop the Loop with Damien Walters
The Most Terrifying Rides In The World (HD)


Související články