The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Dostředivé zrychlení

Z Multimediaexpo.cz

Při křivočarém pohybu je výhodné rozložit zrychlení do směru pohybu, tzn. do směru tečny k trajektorii, a do směru kolmého k pohybu, tzn. do směru normály k trajektorii. Hovoříme pak o tečném zrychlení a normálovém (také dostředivém) zrychlení.

Směr kolmý k trajektorii je dán normálou trajektorie a složka zrychlení, která má stejný směr jako tato normála, se označuje jako normálové zrychlení (hovoří se také o normálové složce zrychlení) \(\mathbf{a}_n\). Normálové zrychlení směřuje do středu křivosti trajektorie, a proto se často nazývá dostředivým zrychlením a značí \(\mathbf{a}_d\).

Obsah

Vektor a velikost normálového zrychlení

Pro velikost normálového zrychlení platí vztah

\(a_n = \frac{\mathrm{d}v_n}{\mathrm{d}t} = \frac{v^2}{\rho}\),

kde \(\mathrm{d}v_n\) je změna velikosti rychlosti ve směru normály k trajektorii pohybu, \(\mathbf{v}\) je okamžitá rychlost a \(\rho\) je poloměr křivosti v daném bodě trajektorie.

Velikost dostředivého zrychlení závisí na rychlosti (obvodové nebo úhlové) a na poloměru zakřivení trajektorie (u pohybu po kružnici na poloměru kružnice). Směr dostředivého zrychlení je do středu zakřivení (do středu kružnice) a je kolmý k vektoru rychlosti.

Dostředivé zrychlení při rovnoměrném pohybu po kružnici

Související informace naleznete také v článku: Rovnoměrný pohyb po kružnici

Při rovnoměrném pohybu po kružnici je poloměr křivosti \(\rho\) roven poloměru kružnice \(r\). Použijeme-li navíc vztah mezi obvodovou a úhlovou rychlostí, pak pro velikost dostředivého zrychlení získáme vztah

\(a_d = \frac{v^2}{r} = \omega^2 \cdot r \,\),

kde v je velikost obvodové rychlosti, ω úhlová rychlost, r je poloměr kružnice.

Odvození

K odvození velikosti dostředivého zrychlení
\(\vec a = \frac {\Delta \vec v} {\Delta t}\)
\(\frac {v_a} {\Delta v} = \frac {r} {\Delta s}\)

Vzorec vyplývá z podobnosti rovnoramenných trojúhelníků se stejným vrcholovým úhlem, přičemž trajektorii \( {\Delta s}\) aproximujeme přeponou AB, neboť ta se k trajektorii limitně blíží.

\(v_a \cdot \Delta s = r \cdot \Delta v\)
\(\Delta v = \frac {v_a \cdot \Delta s} {r}\)
\(\frac {\Delta v} {\Delta t} = \frac {v_a} {r} \cdot \frac {\Delta s} {\Delta t}\)

Obě strany rovnice vydělíme \( {\Delta t}\) a interpretujeme vzniklé derivace (diferenciály) jako zrychlení a rychlost.

\(a = \frac {v_a} {r} \cdot v_a\)
\(\rightarrow a = \frac {v_a^2} {r} \Leftrightarrow a = \omega^2 \cdot r\)

Související články