V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Trajektorie

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (Nahrazení textu)
(++)
 
(Nejsou zobrazeny 3 mezilehlé verze.)
Řádka 1: Řádka 1:
-
[[soubor:trajektorie.png|thumb|Trajektorie s vyznačením bodů v různých časových okamžicích.]]
+
[[Soubor:Trajektorie-pajs.png|thumb|240px|Trajektorie s vyznačením bodů v různých časových okamžicích.]]
'''Trajektorie''' (též '''pohybová křivka''') je [[geometrie|geometrická]] čára [[Euklidovský prostor|prostor]]em, kterou [[hmotný bod]] nebo [[těleso]] při [[Mechanický pohyb|pohybu]] opisuje. Jedná se tedy o [[množina|množinu]] všech [[poloha bodu|poloh]] (hmotného) bodu, v nichž se může v různých [[čas|časových]] okamžicích nacházet.
'''Trajektorie''' (též '''pohybová křivka''') je [[geometrie|geometrická]] čára [[Euklidovský prostor|prostor]]em, kterou [[hmotný bod]] nebo [[těleso]] při [[Mechanický pohyb|pohybu]] opisuje. Jedná se tedy o [[množina|množinu]] všech [[poloha bodu|poloh]] (hmotného) bodu, v nichž se může v různých [[čas|časových]] okamžicích nacházet.
Trajektorií může být [[přímka]], [[kružnice]], [[elipsa]] či jakákoliv obecná [[křivka]]. Podle tvaru trajektorie dělíme pohyb na [[přímočarý pohyb|přímočarý]] a [[křivočarý pohyb|křivočarý]].
Trajektorií může být [[přímka]], [[kružnice]], [[elipsa]] či jakákoliv obecná [[křivka]]. Podle tvaru trajektorie dělíme pohyb na [[přímočarý pohyb|přímočarý]] a [[křivočarý pohyb|křivočarý]].
-
Trajektorii pohybu lze vyjádřit pomocí [[polohový vektor|polohového vektoru]] <math>\mathbf{r}</math>, který vyjádříme jako [[funkce (matematika)|funkci]] [[čas]]u <math>t</math>, tzn. <math>\mathbf{r}=\mathbf{r}(t)</math>.
+
Trajektorii pohybu lze vyjádřit pomocí [[polohový vektor|polohového vektoru]] <big>\(\mathbf{r}\)</big>, který vyjádříme jako [[funkce (matematika)|funkci]] [[čas]]u <big>\(t\)</big>, tzn. <big>\(\mathbf{r}=\mathbf{r}(t)\)</big>.
Tvar trajektorie je závislý na volbě [[vztažná soustava|vztažné soustavy]].
Tvar trajektorie je závislý na volbě [[vztažná soustava|vztažné soustavy]].
-
[[Délka]] trajektorie se nazývá [[dráha (fyzika)|dráha]]. Je to [[vzdálenost]], kterou hmotný bod opíše za určitou [[čas|dobu]] a značí se obvykle ''s''. Dráha je [[funkce (matematika)|funkcí]] času (závisí na čase) <math>s=s(t)</math>.
+
[[Délka]] trajektorie se nazývá [[dráha (fyzika)|dráha]]. Je to [[vzdálenost]], kterou hmotný bod opíše za určitou [[čas|dobu]] a značí se obvykle ''s''. Dráha je [[funkce (matematika)|funkcí]] času (závisí na čase) <big>\(s=s(t)\)</big>.
== Příklady ==
== Příklady ==

Aktuální verze z 25. 8. 2022, 12:04

Trajektorie s vyznačením bodů v různých časových okamžicích.

Trajektorie (též pohybová křivka) je geometrická čára prostorem, kterou hmotný bod nebo těleso při pohybu opisuje. Jedná se tedy o množinu všech poloh (hmotného) bodu, v nichž se může v různých časových okamžicích nacházet.

Trajektorií může být přímka, kružnice, elipsa či jakákoliv obecná křivka. Podle tvaru trajektorie dělíme pohyb na přímočarý a křivočarý.

Trajektorii pohybu lze vyjádřit pomocí polohového vektoru \(\mathbf{r}\), který vyjádříme jako funkci času \(t\), tzn. \(\mathbf{r}=\mathbf{r}(t)\).

Tvar trajektorie je závislý na volbě vztažné soustavy.

Délka trajektorie se nazývá dráha. Je to vzdálenost, kterou hmotný bod opíše za určitou dobu a značí se obvykle s. Dráha je funkcí času (závisí na čase) \(s=s(t)\).

Příklady

Mějme např. bod na obvodu jedoucího kola. Zvolíme-li za vztažnou soustavu zemi, bude trajektorií pohybu tzv. cykloida. Pokud zvolíme soustavu spojenou např. s automobilem, ke kterému kolo patří, pak bude bod na obvodu kola vykonávat pohyb po kružnici, tj. trajektorií bude kružnice.

Budeme-li místo bodu na obvodu sledovat střed daného kola, pak v případě volby vztažné soustavy spojené se zemí půjde o pohyb přímočarý a trajektorií bude tedy přímka.

Související články