The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Moment síly

Z Multimediaexpo.cz

Moment síly je vektorová fyzikální veličina, která vyjadřuje míru otáčivého účinku síly.

Otáčivý účinek síly se vztahuje vzhledem k danému bodu nebo přímce. Bod, ke kterému se moment síly určuje, se nazývá momentovým bodem. Kolmá vzdálenost \(p\) síly od její osy k bodu je tzv. rameno síly.

Bod, vůči němuž se určuje moment síly, nemusí být bodem ležícím na ose otáčení. Moment síly můžeme určit vzhledem k libovolnému bodu, a to i k bodům, které se nachází mimo zkoumané těleso.

Moment síly je definován jako součin síly a kolmé vzdálenosti osy síly od daného bodu. Velikost momentu síly tedy závisí na velikosti síly a na vzdálenosti od osy otáčení (čím dále, tím větší moment síly).

Směr vektoru momentu síly je kolmý na rovinu síly a polohového vektoru působiště, určuje se pravidlem pravé ruky: Zahnuté prsty pravé ruky ukazují směr otáčivého účinku síly (směr otáčení tělesa), vztyčený palec ukazuje směr momentu síly.

Obsah

Značení

  • Symbol veličiny: \(\mathbf{M}\)
  • Základní jednotka SI: newton metr, značka jednotky: Nm
  • Další jednotky: newton centimetr Ncm

Výpočet

Nechť působiště síly \(\mathbf{F}\) je vzhledem k libovolnému bodu \(O\) určeno polohovým vektorem \(\mathbf{r}\). Moment síly vzhledem k bodu \(O\) je pak určen vztahem

\(\bar{M} = \bar{r}\times\bar{F}\)


Vektory \(\mathbf{r}\) a \(\mathbf{F}\) definují rovinu, k níž je výsledný vektor \(\mathbf{M}\) kolmý. Směr vektoru \(\mathbf{M}\) určuje směr osy otáčení (rotace). Tato osa prochází bodem \(O\), ke kterému moment síly určujeme.


Pokud je \(\alpha\) úhel mezi vektory \(\mathbf{r}\) a \(\mathbf{F}\), pak lze z předchozího vztahu získat velikost momentu jako

\(M=Fr\sin\alpha\)

Tento vztah lze chápat dvěma způsoby

  • \(M=r(F\sin\alpha)\)
V tomto případě chápeme vztah jako součin délky průvodiče \(r\) a složky síly \(F_k=F\sin\alpha\) kolmé na tento průvodič. Složka \(F_k\) má otáčivou schopnost, zatímco složka \(F_r\), která je kolmá na \(F_k\) a rovnoběžná s průvodičem \(\mathbf{r}\), tuto schopnost nemá.
  • \(M=F(r\sin\alpha)\)
V tomto případě lze vztah chápat jako součin síly o velikost \(F\) a ramene síly \(p=r\sin\alpha\), tedy
\(M=Fp\).
Ramenem síly \(p\) se rozumí kolmá vzdálenost vektorové přímky síly od bodu \(O\) (tedy bodu, vůči němuž moment síly určujeme).

Vlastnosti

  • Pokud určujeme moment síly vzhledem k bodu, je \(\mathbf{M}\) kolmé k průvodiči \(\mathbf{r}\) a současně k síle \(\mathbf{F}\). V případě, že určujeme moment síly k ose, leží \(\mathbf{M}\) ve zvolené ose.
  • Moment síly vzhledem k ose se definuje jako průmět momentu síly vzhledem k bodu osy do této síly. Moment síly vzhledem k ose tedy leží ve zvolené ose. Působící síla tedy neurčuje směr momentu síly (jako v případě momentu vzhledem k bodu), ale pouze velikost tohoto momentu.
  • Při řešení se postupuje tak, že působištěm síly se proloží rovina kolmá k ose, ke které se určuje moment síly. Vektor síly \(\mathbf{F}\) je pak promítnut do této roviny, čímž se získá složka \(\mathbf{F}^\prime\), která je odpovědná za otáčení. Průsečík osy, k níž se určuje moment síly, a roviny, v níž leží \(\mathbf{F}^\prime\), je bodem, k němuž se určí moment síly.
  • Působí-li ve společném působišti několik sil \(\mathbf{F}_i\), je jejich celkový účinek dán výslednicí sil \(\mathbf{R} = \mathbf{F}_1+\mathbf{F}_2+\cdots+\mathbf{F}_n = \sum_{i=1}^n \mathbf{F}_i\) a výsledný moment je dán vztahem \(\mathbf{M} = \mathbf{r}\times\mathbf{R} = \mathbf{r}\times(\mathbf{F}_1+\mathbf{F}_2+\cdots+\mathbf{F}_n)\).

Z distributivního zákona pro vektorový součin pak dostaneme

\(\mathbf{M} = (\mathbf{r}\times\mathbf{F}_1)+(\mathbf{r}\times\mathbf{F}_2)+\cdots+(\mathbf{r}\times\mathbf{F}_n) = \mathbf{M}_1+\mathbf{M}_2+\cdots+\mathbf{M}_n = \sum_{i=1}^n \mathbf{M}_i\)

Výsledný moment sil působících v jednom bodě vzhledem k libovolnému bodu je tedy roven vektorovému součtu momentů všech složek k danému bodu.

Související články