The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Velká poloosa dráhy

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
m (1 revizi)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 2 mezilehlé verze.)
Řádka 2: Řádka 2:
'''Velká poloosa dráhy''' je jedním z [[elementy dráhy|elementů dráhy]], popisujících pohyb [[kosmické těleso|kosmického tělesa]] (přirozeného, např. [[planeta|planety]], [[kometa|komety]] apod., nebo [[umělé kosmické těleso|umělého]]) v kosmickém prostoru. Značí se ''a'' a vyjadřuje se v délkových mírách; u přirozených kosmických těles, zejména planet ve [[Sluneční soustava|sluneční soustavě]] se používá nejčastěji [[astronomická jednotka|astronomické jednotky (AU)]]. Vyjadřuje střední vzdálenost kosmického tělesa od těžiště soustavy.
'''Velká poloosa dráhy''' je jedním z [[elementy dráhy|elementů dráhy]], popisujících pohyb [[kosmické těleso|kosmického tělesa]] (přirozeného, např. [[planeta|planety]], [[kometa|komety]] apod., nebo [[umělé kosmické těleso|umělého]]) v kosmickém prostoru. Značí se ''a'' a vyjadřuje se v délkových mírách; u přirozených kosmických těles, zejména planet ve [[Sluneční soustava|sluneční soustavě]] se používá nejčastěji [[astronomická jednotka|astronomické jednotky (AU)]]. Vyjadřuje střední vzdálenost kosmického tělesa od těžiště soustavy.
U [[elipsa|eliptické dráhy]] je rovna [[aritmetický průměr|aritmetickému průměru]] hodnot vzdálenosti [[apsida (astronomie)|periapsidy (pericentra)]] a [[apsida (astronomie)|apoapsidy (apocentra)]] od těžiště soustavy, tedy
U [[elipsa|eliptické dráhy]] je rovna [[aritmetický průměr|aritmetickému průměru]] hodnot vzdálenosti [[apsida (astronomie)|periapsidy (pericentra)]] a [[apsida (astronomie)|apoapsidy (apocentra)]] od těžiště soustavy, tedy
-
:<math> a = \frac { R_P + R_A }{2}</math>,
+
:<big>\( a = \frac { R_P + R_A }{2}\)</big>,
-
kde <math>R_P</math> je vzdálenost periapsidy a <math>R_A</math> je vzdálenost apoapsidy.
+
kde <big>\(R_P\)</big> je vzdálenost periapsidy a <big>\(R_A\)</big> je vzdálenost apoapsidy.
Hodnota velké poloosy je přímo svázána s dalšími elementy dráhy podle [[Keplerovy zákony|3. Keplerova zákona]]. [[Doba oběhu|Doba oběhu (perioda)]] ''P'' je rovna
Hodnota velké poloosy je přímo svázána s dalšími elementy dráhy podle [[Keplerovy zákony|3. Keplerova zákona]]. [[Doba oběhu|Doba oběhu (perioda)]] ''P'' je rovna
-
:<math>P = 2 \pi \sqrt{ \frac { a^3 } { \mu } }</math>,
+
:<big>\(P = 2 \pi \sqrt{ \frac { a^3 } { \mu } }\)</big>,
kde ''a'' je velká poloosa a ''μ'' je [[gravitační parametr]] [[centrální těleso|centrálního tělesa]].  
kde ''a'' je velká poloosa a ''μ'' je [[gravitační parametr]] [[centrální těleso|centrálního tělesa]].  
Vyjádříme-li u těles pohybujících se Sluneční soustavou ''a'' v astronomických jednotkách, dostaneme pro dobu oběhu ''P'' v rocích zjednodušený výraz
Vyjádříme-li u těles pohybujících se Sluneční soustavou ''a'' v astronomických jednotkách, dostaneme pro dobu oběhu ''P'' v rocích zjednodušený výraz
-
:<math> P = \sqrt { a^3 }</math>.
+
:<big>\( P = \sqrt { a^3 }\)</big>.
Pro [[střední denní pohyb]] resp. střední pohyb za jednotku času ''n'' vyjádřený ve [[obloukový stupeň|stupních]] za jednotku času
Pro [[střední denní pohyb]] resp. střední pohyb za jednotku času ''n'' vyjádřený ve [[obloukový stupeň|stupních]] za jednotku času
-
<math>n = \frac { 180 }{ \pi } \sqrt{ \frac { \mu } { a^3 } } </math>,
+
<big>\(n = \frac { 180 }{ \pi } \sqrt{ \frac { \mu } { a^3 } } \)</big>,
kde ''a'' je velká poloosa a ''μ'' je [[gravitační parametr]] [[centrální těleso|centrálního tělesa]].  
kde ''a'' je velká poloosa a ''μ'' je [[gravitační parametr]] [[centrální těleso|centrálního tělesa]].  
U [[hyperbola|hyperbolických drah]] je hodnota velké poloosy záporná (''a'' < 0).
U [[hyperbola|hyperbolických drah]] je hodnota velké poloosy záporná (''a'' < 0).
U [[Parabola (matematika)|parabolické dráhy]] je hodnota velké poloosy nedefinovaná. Blíží-li se [[excentricita dráhy|excentricita]] eliptické dráhy k hodnotě 1 zleva (tj. elipsa se protahuje až se mění na parabolu), pak hodnota velké poloosy roste nade všechny meze, tj.
U [[Parabola (matematika)|parabolické dráhy]] je hodnota velké poloosy nedefinovaná. Blíží-li se [[excentricita dráhy|excentricita]] eliptické dráhy k hodnotě 1 zleva (tj. elipsa se protahuje až se mění na parabolu), pak hodnota velké poloosy roste nade všechny meze, tj.
-
:<math> \lim_{e \to 1} a = + \infty</math>.
+
:<big>\( \lim_{e \to 1} a = + \infty\)</big>.
Naopak klesá-li u hyperbolické dráhy hodnota excentricity k hodnotě 1 zprava (tj. hyperbola se zužuje a mění se na parabolu), pak (záporná) hodnota velké poloosy klesá pode všechny meze, tj.
Naopak klesá-li u hyperbolické dráhy hodnota excentricity k hodnotě 1 zprava (tj. hyperbola se zužuje a mění se na parabolu), pak (záporná) hodnota velké poloosy klesá pode všechny meze, tj.
-
:<math> \lim_{e \to 1} a = - \infty</math>.
+
:<big>\( \lim_{e \to 1} a = - \infty\)</big>.
== Související články ==
== Související články ==
* [[Keplerovy zákony]]
* [[Keplerovy zákony]]

Aktuální verze z 14. 8. 2022, 14:54

Velká poloosa

Velká poloosa dráhy je jedním z elementů dráhy, popisujících pohyb kosmického tělesa (přirozeného, např. planety, komety apod., nebo umělého) v kosmickém prostoru. Značí se a a vyjadřuje se v délkových mírách; u přirozených kosmických těles, zejména planet ve sluneční soustavě se používá nejčastěji astronomické jednotky (AU). Vyjadřuje střední vzdálenost kosmického tělesa od těžiště soustavy. U eliptické dráhy je rovna aritmetickému průměru hodnot vzdálenosti periapsidy (pericentra) a apoapsidy (apocentra) od těžiště soustavy, tedy

\( a = \frac { R_P + R_A }{2}\),

kde \(R_P\) je vzdálenost periapsidy a \(R_A\) je vzdálenost apoapsidy. Hodnota velké poloosy je přímo svázána s dalšími elementy dráhy podle 3. Keplerova zákona. Doba oběhu (perioda) P je rovna

\(P = 2 \pi \sqrt{ \frac { a^3 } { \mu } }\),

kde a je velká poloosa a μ je gravitační parametr centrálního tělesa. Vyjádříme-li u těles pohybujících se Sluneční soustavou a v astronomických jednotkách, dostaneme pro dobu oběhu P v rocích zjednodušený výraz

\( P = \sqrt { a^3 }\).

Pro střední denní pohyb resp. střední pohyb za jednotku času n vyjádřený ve stupních za jednotku času \(n = \frac { 180 }{ \pi } \sqrt{ \frac { \mu } { a^3 } } \), kde a je velká poloosa a μ je gravitační parametr centrálního tělesa. U hyperbolických drah je hodnota velké poloosy záporná (a < 0). U parabolické dráhy je hodnota velké poloosy nedefinovaná. Blíží-li se excentricita eliptické dráhy k hodnotě 1 zleva (tj. elipsa se protahuje až se mění na parabolu), pak hodnota velké poloosy roste nade všechny meze, tj.

\( \lim_{e \to 1} a = + \infty\).

Naopak klesá-li u hyperbolické dráhy hodnota excentricity k hodnotě 1 zprava (tj. hyperbola se zužuje a mění se na parabolu), pak (záporná) hodnota velké poloosy klesá pode všechny meze, tj.

\( \lim_{e \to 1} a = - \infty\).

Související články