The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).
Weierstrassova funkce
Z Multimediaexpo.cz
(Rozdíly mezi verzemi)
(+ Masivní vylepšení) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
| (Není zobrazena jedna mezilehlá verze.) | |||
| Řádka 1: | Řádka 1: | ||
| - | [[Soubor:Weierf.png|thumb|260px|Weierstrassova funkce s konstantami < | + | [[Soubor:Weierf.png|thumb|260px|Weierstrassova funkce s konstantami <big>\(a=0,5\)</big>; <big>\(b=3\)</big>.]] |
[[Soubor:WeierstrassFunction.png|260px|thumb|Ukázka soběpodobnosti.]] | [[Soubor:WeierstrassFunction.png|260px|thumb|Ukázka soběpodobnosti.]] | ||
'''Weierstrassova funkce''', pojmenovaná po [[Německo|německém]] matematikovi Karlu Weierstrassovi (1815–1897), je [[matematika|matematická]] [[Funkce (matematika)|funkce]], která je ve všech [[bod]]ech [[Spojitá funkce|spojitá]], ale v žádném bodě nemá [[derivace|derivaci]]. | '''Weierstrassova funkce''', pojmenovaná po [[Německo|německém]] matematikovi Karlu Weierstrassovi (1815–1897), je [[matematika|matematická]] [[Funkce (matematika)|funkce]], která je ve všech [[bod]]ech [[Spojitá funkce|spojitá]], ale v žádném bodě nemá [[derivace|derivaci]]. | ||
| Řádka 10: | Řádka 10: | ||
* Podle původní publikace ([http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00770001&seq=&view=50&frames=0&pagenum=97 http://historical.library.cornell.edu/…]) a [http://planetmath.org/encyclopedia/WeierstrassFunction.html http://planetmath.org/…]: | * Podle původní publikace ([http://historical.library.cornell.edu/cgi-bin/cul.math/docviewer?did=00770001&seq=&view=50&frames=0&pagenum=97 http://historical.library.cornell.edu/…]) a [http://planetmath.org/encyclopedia/WeierstrassFunction.html http://planetmath.org/…]: | ||
| - | :< | + | :<big>\(f(x) = \sum_{n=0}^\infty a^n\cos(b^n\pi x)\)</big> |
| - | :kde < | + | :kde <big>\(0<a<1\)</big>, <big>\(b\)</big> je kladné liché číslo a konstanty splňují následující podmínku. |
| - | :< | + | :<big>\( ab > 1+\frac{3}{2} \pi\)</big> |
| - | :Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou < | + | :Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou <big>\(ab \ge 1\)</big>. |
* Podle [http://mathworld.wolfram.com/WeierstrassFunction.html http://mathworld.wolfram.com/…]: | * Podle [http://mathworld.wolfram.com/WeierstrassFunction.html http://mathworld.wolfram.com/…]: | ||
| - | [[Soubor:Riemannf.png|thumb|260px|Riemannova funkce, < | + | [[Soubor:Riemannf.png|thumb|260px|Riemannova funkce, <big>\(a=2\)</big>.]] |
| - | :< | + | :<big>\(f_a(x) = \sum_{k=1}^\infty \frac{ \sin(\pi k^a x) } {\pi k^a} \,\)</big> |
| - | :přičemž údajně podle původní publikace < | + | :přičemž údajně podle původní publikace <big>\(a = 2\)</big>. Tato funkce má však v určitých izolovaných bodech konečné derivace. Podle jiných zdrojů<ref>http://epubl.ltu.se/1402-1617/2003/320/index-en.html</ref> je tato funkce nazývána ''Riemannova'', neboť podle Weierstrasse ji Bernhard Riemann uváděl na svých přednáškách okolo roku 1861. |
* Lze nalézt i jiné tvary nebo konkrétní konstanty.<ref name="conroy" /><ref>http://pirate.shu.edu/~wachsmut/ira/cont/fp_weier.html</ref> | * Lze nalézt i jiné tvary nebo konkrétní konstanty.<ref name="conroy" /><ref>http://pirate.shu.edu/~wachsmut/ira/cont/fp_weier.html</ref> | ||
Aktuální verze z 14. 8. 2022, 14:54
Weierstrassova funkce, pojmenovaná po německém matematikovi Karlu Weierstrassovi (1815–1897), je matematická funkce, která je ve všech bodech spojitá, ale v žádném bodě nemá derivaci.
Funkce se chová jako fraktál, neboť zvětšené části grafu a původní graf jsou podobné.[1]
Definice
Weierstrassova funkce bývá uváděna v různých tvarech s různými konstantami.
- Podle původní publikace (http://historical.library.cornell.edu/…) a http://planetmath.org/…:
- \(f(x) = \sum_{n=0}^\infty a^n\cos(b^n\pi x)\)
- kde \(0<a<1\), \(b\) je kladné liché číslo a konstanty splňují následující podmínku.
- \( ab > 1+\frac{3}{2} \pi\)
- Později bylo dokázáno, že poslední uvedenou podmínku lze nahradit podmínkou \(ab \ge 1\).
- \(f_a(x) = \sum_{k=1}^\infty \frac{ \sin(\pi k^a x) } {\pi k^a} \,\)
- přičemž údajně podle původní publikace \(a = 2\). Tato funkce má však v určitých izolovaných bodech konečné derivace. Podle jiných zdrojů[2] je tato funkce nazývána Riemannova, neboť podle Weierstrasse ji Bernhard Riemann uváděl na svých přednáškách okolo roku 1861.
Související články
Reference
- ↑ 1,0 1,1 Příklad Weierstrassovy funkce, ukázka soběpodobnosti: http://www.math.washington.edu/…
- ↑ http://epubl.ltu.se/1402-1617/2003/320/index-en.html
- ↑ http://pirate.shu.edu/~wachsmut/ira/cont/fp_weier.html
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
