The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Ordinální aritmetika

Z Multimediaexpo.cz

Ordinální aritmetika je jednou z disciplín klasické teorie množin. Zabývá se rozšířením základních aritmetických operací (sčítání, násobení, mocnění) z přirozených čísel na všechna ordinální čísla (včetně nekonečných). Toto rozšíření probíhá tak, aby byly dobře zachyceny vlastnosti takzvaných dobrých uspořádání. Jinou možností je pokus o zachycení vlastností velikosti množin - tím se zabývá kardinální aritmetika.

V celém článku jsou písmena ze začátku řecké alfabety používána pro označení ordinálů.

Obsah

Ordinální čísla a jejich vlastnosti

Základní definice a vlastnosti ordinálních čísel najdete v článku Ordinální číslo.

Definice ordinálního součtu a součinu

Jsou-li \( \alpha \,\!\) a \( \beta \,\!\) dvě ordinální čísla, pak:

  • jako \( \alpha + \beta \,\!\) označíme ordinální číslo, které je typem množiny \( ( \{ 0 \} \times \alpha ) \cup ( \{ 1 \} \times \beta ) \) v lexikografickém uspořádání
  • jako \( \alpha . \beta \,\!\) označíme ordinální číslo, které je typem množiny \( \beta \times \alpha \) v lexikografickém uspořádání.

Typem dobře uspořádané množiny se rozumí ordinální číslo, které je při uspořádání relací \( \in \) izomorfní s touto množinou - jedním z poměrně jednoduchých výsledků teorie ordinálních čísel je, že každá dobře uspořádaná množina je izomorfní s právě jedním ordinálem.

Příklady součtu dvou ordinálních čísel

Součet 3 + 2:
\( ( \{ 0 \} \times 3) \cup ( \{ 1 \} \times 2) = \)
\( ( \{ 0 \} \times \{ 0,1,2 \}) \cup ( \{ 1 \} \times \{ 0,1 \}) = \)
\( \{ [0,0],[0,1],[0,2] \} \cup \{ [1,0],[1,1] \} = \)
\( \{ [0,0],[0,1],[0,2],[1,0],[1,1] \} \,\!\)
Typem této množiny v lexikografickém uspořádání (tj. napřed podle prvního a pak podle druhého prvku uspořádané dvojice) je ordinál 5, takže 2 + 3 = 5, což vypadá docela povědomě.

Součet \( 1 + \omega_0 \,\!\) (jako \( \omega_0 \,\!\) se značí množina všech přirozených čísel)
\( ( \{ 0 \} \times 1) \cup ( \{ 1 \} \times \omega_0 ) = \)
\( ( \{ 0 \} \times \{ 0 \}) \cup ( \{ 1 \} \times \{ 0,1,2,3,... \} ) = \)
\( \{ [0,0] \} \cup \{ [1,0],[1,1],[1,2],[1,3],... \} = \)
\( \{ [0,0],[1,0],[1,1],[1,2],[1,3],... \} \,\!\)
Typem této množiny v lexikografickém uspořádání je \( \omega_0 \,\!\), takže \( 1 + \omega_0 = \omega_0 \,\!\). Tady už je to s tou povědomostí horší - když něco zleva přičtu k množině všech přirozených čísel, dostanu opět množinu přirozených čísel.

Doporučuji každému, aby si zkusil podle definice rozepsat \( \omega_0 + 1 \,\!\). Dojde k překvapivému zjištění:
\( 1 + \omega_0 = \omega_0 < \omega_0 + 1 \,\!\)

Příklady součinu dvou ordinálních čísel

Součin 3.2:
\( 2 \times 3 = \{ 0,1 \} \times \{ 0,1,2 \} = \)
\( \{[0,0],[0,1],[0,2],[1,0],[1,1],[1,2] \} \,\!\)
Typem této množiny s lexikografickým uspořádáním je číslo 6.

Součin \( 2.\omega_0 \,\!\)
: \( \omega_0 \times 2 = \{ 0,1,2,... \} \times \{ 0,1 \} = \,\! \)
\( \{ [0,0],[0,1],[1,0],[1,1],[2,0],... \} \,\! \)
Typem této množiny s lexikografickým uspořádáním je \( \omega_0 \,\!\).

Obrátím-li poslední příklad na \( \omega_0 . 2 \,\!\), dostávám množinu
\( \{ [0,0],[0,1],[0,2],...,[1,0],[1,1],[1,2],... \} \,\!\),
jejímž typem již není \( \omega_0 \,\!\), ale větší ordinální číslo \( \omega_0 + \omega_0 = \omega_0 . 2 \,\!\)

Rozhodně opět \( 2 . \omega_0 < \omega_0 . 2 \,\! \).

Vlastnosti ordinálního součtu a součinu

Ordinální součet a součin je definován tak, aby na přirozených číslech (tj. v našem případě na konečných ordinálech) dával stejné výsledky jako běžný aritmetický součet a součin v Peanově aritmetice. Dá se dokonce ukázat, že ordinální aritmetika na konečných ordinálech je modelem Peanovy aritmetiky.

Zajímavější začíná být situace na nekonečných ordinálech, kde se již toto chování liší - součet ani součin nejsou komutativní a ordinální součin je distributivní pouze zleva:
\( ( \forall \alpha, \beta, \gamma) ( \alpha.(\beta + \gamma) = \alpha.\beta + \alpha.\gamma) \)
Opačně to ale neplatí, protože například: \( (1 + 1).\omega_0 = 2.\omega_0 \neq 1.\omega_0 + 1.\omega_0 = \omega_0.2 \) - viz předchozí příklady.

Uveďme některé další vlastnosti ordinálního součtu a součinu (všechny lze snadno odvodit přímo z definice stejně, jako v předchozích příkladech):

  • \( \alpha + 0 = 0 + \alpha = \alpha \,\!\)
  • \( \alpha . 0 = 0 . \alpha = 0 \,\!\)
  • \( \alpha . 1 = 1 . \alpha = \alpha \,\!\)
  • \( \alpha + ( \beta + \gamma) = ( \alpha + \beta) + \gamma \,\!\)
  • \( \alpha . ( \beta . \gamma) = ( \alpha . \beta) . \gamma \,\!\)

A na závěr ještě něco, co vypadá trochu jako zbytek po dělení na přirozených číslech:
Pro každé dva ordinály \( \alpha, \beta, \beta > 0 \,\!\) existují \( \gamma_1 \leq \alpha, \gamma_2 < \beta \,\!\) takové, že
\( \alpha = \beta . \gamma_1 + \gamma_2 \,\!\)

Definice ordinální mocniny

Ordinální mocnina mocnina je opět rozšířením své jmenovkyně známé z přirozených čísel, definuje se rekurzivně následujícím způsobem:

  1. \( \alpha^0 = 1 \,\!\)
  2. \( \alpha^{\beta + 1} = \alpha^{\beta} . \alpha \,\!\)
  3. pro limitní ordinál \( \beta \,\!\) je \( \alpha^{\beta} = sup \{ \alpha^{\gamma} : 0 < \gamma < \beta \} \,\!\)
    sup v tomto výrazu znamená supremum dané množiny k uspořádání ordinálních čísel relací \( \in \)

Vlastnosti ordinální mocniny

Ordinální mocnina má opět řadu vlastností, které bychom od aritmetické operace toho jména čekali:

  • \( 0^0 = 1 \,\!\)
  • \( 0^{\alpha} = 0 \,\!\) pro \( \alpha > 0 \,\!\)
  • \( 1^{\alpha} = 1 \,\!\)
  • \( \alpha^1 = \alpha \,\!\)
  • \( \alpha^2 = \alpha . \alpha \,\!\)

A především:

  • \( \alpha^{\beta + \gamma} = \alpha^{\beta} . \alpha^{\gamma} \,\!\)
  • \( (\alpha^{\beta})^{\gamma} = \alpha^{\beta.\gamma} \,\!\)

Mocninný rozvoj ordinálního čísla

Na závěr ještě uveďme větu o mocninném rozvoji ordinálních čísel (konkrétně pro základ \( \omega_0 \,\!\) - opět lze srovnávat s mocninným rozvojem na přirozených číslech například ze základu 2:

Je-li \( \omega = \omega_0 \,\!\) množina přirozených čísel a \( \alpha \,\!\) libovolný ordinál, pak existují jednoznačně daná přirozená čísla \( k, m_0, m_1,...,m_k \,\!\) a ordinály \( \beta_0 > \beta_1 > \beta_2 >...> \beta_k \,\!\) takové, že platí:
\( \alpha = \omega^{\beta_0}.m_0 + \omega^{\beta_1}.m_1 + ... + \omega^{\beta_k}.m_k \,\!\)

Tento zápis nazýváme Cantorův normální tvar ordinálního čísla.

Pro vyjádření čísla \(\,\alpha\) v Cantorově normálním tvaru platí \(\alpha\geq\beta_0\), přičemž rovnost nastává právě tehdy, když \(\,\alpha=\omega^\alpha\). Takových \(\,\alpha\) existuje dokonce vlastní třída, nejmenší z nich se nazývá \(\varepsilon_0\). Pro \(\,\alpha<\varepsilon_0\) tedy je \(\,\alpha>\beta_0\), což umožňuje často používanou metodu dokazování – takzvanou indukci do epsilon nula.

Související články