dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...

Kuželosečka
Z Multimediaexpo.cz
Kuželosečka je rovinná křivka, která vznikne jako průnik roviny s pláštěm rotačního kuželu (tzv. kuželová plocha), přičemž rovina neprochází jeho vrcholem.
Obsah[skrýt] |
Typy kuželoseček
Protínáme-li kužel rovinou kolmou na osu symetrie rotačního kuželu, výslednou kuželosečkou je kružnice.
Protínáme-li kužel rovinou rovnoběžnou právě s jednou z povrchových přímek pláště kuželu, výslednou kuželosečkou je parabola.
Protínáme-li kužel rovinou, která svírá s osou symetrie rotačního kuželu úhel menší než 90° a větší než polovina vrcholového úhlu kuželu, výslednou kuželosečkou je elipsa. Rovina přitom protíná všechny povrchové přímky pláště kužele a není tedy s žádnou z nich rovnoběžná.
Protínáme-li kužel rovinou, která svírá s osou symetrie rotačního kuželu úhel menší než polovina vrcholového úhlu kuželu, výslednou kuželosečkou je hyperbola; přitom rovina je rovnoběžná právě se dvěma povrchovými přímkami kuželu.
(A: parabola, B: elipsa a kružnice, C: hyperbola)
Degenerované kuželosečky
Za kuželosečku bývá často považován také průnik kuželové plochy s rovinou procházející vrcholem kuželové plochy. Takovéto kuželosečky označujeme jako degenerované (nevlastní, singulární), neboť podle polohy roviny a osy kuželové plochy dochází k redukci kuželosečky na bod, přímku nebo dvě přímky. Kuželosečky, které nejsou degenerované, tzn. kružnici, elipsu, parabolu a hyperbolu, označujeme jako vlastní (regulární) kuželosečky.
Algebraické vyjádření
Každou kuželosečku lze vyjádřit rovnicí
,
kde koeficienty
Invarianty
Při transformaci souřadnic se nemění některé charakteristické veličiny algebraické rovnice kuželosečky. Tyto veličiny se označují jako invarianty. Uvedená rovnice má tři invarianty:
- determinant kuželosečky
- determinant kvadratických členů
- třetím invarientem je
Při transformaci souřadnic se tedy mění koeficienty
Klasifikace kuželoseček podle invariantů
Invarianty rovnice kuželosečky lze použít ke klasifikaci jednotlivých křivek, které jsou touto rovnicí určeny.
Je-li
Rozdělení kuželoseček | středové kuželosečky | nestředové kuželosečky | |||
vlastní kuželosečky | reálná elipsa | hyperbola | parabola | ||
imaginární elipsa | |||||
nevlastní kuželosečky | dvojice nerovnoběžných (protínajících se) imaginárních přímek s reálným průsečíkem v nekonečnu | dvě reálné různoběžky | dvě různé reálné rovnoběžky | dvě splývající rovnoběžky | dvě imaginární rovnoběžky |
Související články
Externí odkazy
[zobrazit] Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|