The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Integrální rovnice

Z Multimediaexpo.cz

Integrální rovnice je v matematice taková rovnice, v níž se neznámá funkce nachází pod integrálem. Integrální rovnice úzce souvisejí s diferenciálními rovnicemi a některé problémy mohou být formulovány oběma způsoby (např. Maxwellovy rovnice).

Za zakladatele teorie integrálních rovnic se považuje Erik Ivar Fredholm, později k ní významně přispěl italský matematik Vito Volterra (1860–1940).

Obsah

Klasifikace integrálních rovnic

Integrální rovnice lze rozdělit na dvě základní třídy: Fredholmovy integrální rovnice a Volterrovy integrální rovnice. U Fredholmových rovnic má interval integrace konstantní hranice, u Volterrových rovnic je pak jedna z hranic funkcí proměnné x.

Další dělení je na rovnice prvního a druhého druhu. V rovnicích prvního druhu se neznámá funkce nachází jen pod integrálem, v rovnicích druhého druhu se nachází pod integrálem i mimo integrál.

Fredholmovy rovnice prvního druhu

Nejzákladnějším typem integrálních rovnic jsou Fredholmovy rovnice prvního druhu. Jsou to integrální rovnice tvaru

\( f(x) = \int_a^b K(x,t)\,\varphi(t)\,dt, \)

kde \(\varphi\) je neznámá funkce, f je známá funkce a K je další funkce o dvou proměnných, často nazývaná také jaderná funkce. Rozsah integrace má konstantní hranice.

Fredholmovy rovnice druhého druhu

Fredholmovy rovnice druhého druhu jsou rovnice s konstantním rozsahem integrace a s neznámou funkcí nacházející se jak v integrandu, tak i mimo něj. Jsou to integrální rovnice tvaru

\( \varphi(x) = f(x)+ \lambda \int_a^b K(x,t)\,\varphi(t)\,dt. \)

Číslo \(\lambda\) je neznámý parametr, který hraje stejnou roli jako vlastní číslo v lineární algebře. Význam ostatních symbolů je stejný, jako u rovnic prvního druhu.

Volterrovy rovnice prvního druhu

Volterrovy rovnice prvního druhu jsou zobecněním Fredholmových rovnic prvního druhu, ve kterém je jedna z hranic integračního rozsahu funkcí proměnné x. Volterrovy rovnice prvního druhu mají tvar:

\( f(x) = \int_a^x K(x,t)\,\varphi(t)\,dt.\)

Volterrovy rovnice druhého druhu

Volterrovy rovnice druhého druhu jsou zobecněním Fredholmových rovnic druhého druhu. Jedna z hranic integračního rozsahu je funkcí proměnné x. Rovnice tohoto typu mají tvar:

\( \varphi(x) = f(x) + \lambda \int_a^x K(x,t)\,\varphi(t)\,dt. \)

Externí odkazy