The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Heavisideova funkce

Z Multimediaexpo.cz

    H1(x)
    H1/2(x)

Heavisideova funkce (také jednotkový skok) je nespojitá funkce, jejíž hodnota je nulová pro zápornou hodnotu argumentu a rovna jedné pro kladnou hodnotu argumentu. Hodnota funkce pro nulový argument není podstatná a proto je různými autory definována odlišně (viz níže).

Často se používá v teorii řízení a při zpracování signálu, kde slouží k reprezentaci jednorázové změny signálu. Pojmenována byla po anglickém učenci Oliveru Heavisideovi.

Obsah

Definice

Heavisidova funkce (s parametrem p) se definuje předpisem:

\(H_p(x) = \left\{ \begin{matrix} 0 & \mbox{ pro }x<0 \\ p & \mbox{ pro }x=0 \\ 1 & \mbox{ pro }x> 0 \end{matrix}\right.\),

kde 0 ≤ p ≤ 1 je reálné číslo určující hodnotu funkce v bodě 0 (platí \(p = H_p(0)\)).

Index p je většinou volen pevně a v zápise se vynechává. Heavisidova funkce se potom značí pouze H(x).

Hodnota v nule

Parametr \(p\) z definice funkce se nejčastěji volí jako 0, 1/2 nebo 1. Pro hodnotu 1/2 svědčí symetrie výsledné funkce a fakt, že hodnota zpětné transformace Fourierova obrazu funkce v bodech nespojitosti je aritmetický průměr limit zleva a zprava. Důvodem jiné volby může být praktičnost při jistých způsobech použití. V mnoha případech na hodnotě v nule vůbec nezáleží, např. integrujeme-li složený výraz s touto funkcí, neboť Lebesgueova míra množiny \(\{0\}\) je nulová.

Nastavíme-li \(p=H(0)=1/2\), můžeme definovat funkci pomocí znaménkové funkce (signum):

\(H(x) = \frac{1+sgn(x)}{2}\)

Pro případ, kdy \(p=1\) nebo \(p=0\) můžeme též chápat Heavisideovu funkci takto: \(H_1 = \chi_{\langle 0, \infty)}\) respektive \(H_0 = \chi_{(0, \infty)}\) kde \(\chi_M\) značí charakteristickou funkci množiny \(M\).

Vlastnosti

Mezi jednotkovým skokem a Diracovou funkcí existuje vztah, který lze zapsat jako

\(H(x) = \int_{-\infty}^x \delta(t)\mathrm{d}t\)

Derivací Heavisideovy funkce je tedy Diracova delta funkce, primitivní funkcí je tzv. náběhová funkce.

Související články

Externí odkazy