V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Geometrické zobrazení

Z Multimediaexpo.cz

Geometrické zobrazení je zobrazení, které každému bodu \(A</math> útvaru \(U</math> přiřazuje právě jeden bod \(A^\prime</math> útvaru \(U^\prime</math>.

Bod \(A</math> je tzv. vzor a bod \(A^\prime</math> se označuje jako obraz.

Obsah

Klasifikace geometrických zobrazení

Podle zachovávajících se vlastností

Podle toho, které vlastnosti se při geometrickém zobrazení zachovávají a které se mění, lze geometrická zobrazení rozdělit na:

Podle dimenze prostoru

Geometrická zobrazení lze rozdělit podle dimenze transformovaného prostoru a podle toho, zda vzor i obraz mají stejnou dimenzi.

Dimenze vzoru i obrazu jsou stejné

  • lineární – např. posunutí bodu po přímce
  • rovinné – oproti lineárním obsahuje některá další zobrazení, např. rotace kolem bodu
  • prostorové
  • vícedimenzionální

Dimenze vzoru a obrazu jsou různé

Invariantní útvar

Pokud pro nějakou dvojici bodů \(A, A^\prime</math> platí \(A=A^\prime</math>, pak bod \(A</math> označujeme jako samodružný. Jestliže platí \(U=U^\prime</math>, pak útvar \(U</math> označíme jako samodružný (invariantní).

Involutorní zobrazení

Máme-li dva body \(A, B</math>, pro které při daném zobrazení platí, že bod \(B</math> je obrazem bodu \(A</math> a současně je bod \(A</math> obrazem bodu \(B</math>, pak říkáme, že body \(A, B</math> tvoří involutorní dvojici.

Zobrazení, které není identita a při kterém každý bod patří involutorní dvojici, nazýváme involutorním zobrazením (involucí).

Opakovaná involuce (tedy složená sama se sebou) dává identitu. Příkladem jsou souměrnosti v (euklidovské) rovině a prostoru, např. zrcadlení.

Související články