The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 24, 2026
(shortly after the 2026 Winter Olympics).

Vrh šikmý

Z Multimediaexpo.cz

Vrh šikmý je pohyb tělesa v homogenním gravitačním poli, při kterém počáteční rychlost svírá s horizontem nenulový elevační úhel.

Pokud vrh probíhá ve vakuu, pohybuje se těleso po parabole, ve vzduchu (tzn. s nezanedbatelným odporem vzduchu) po tzv. balistické křivce.

Matematický model

Předpokládejme, že těleso má počáteční rychlost v0 svírající s vodorovným směrem elevační úhel α. Následný pohyb (ve vakuu, resp. při zanedbání odporu vzduchu) se skládá z rovnoměrného přímočarého pohybu touto rychlostí v původním směru (tímto směrem položíme osu x) a z volného pádu (tedy rovnoměrně zrychleného pohybu) ve směru gravitačního zrychlení g, který lze ztotožnit s pohybem ve směru osy y. Ve směru osy z tedy pohyb neprobíhá (trajektorií tedy bude rovinná křivka).

Proto platí:

<math>x = x_0 + v_0 t \cos{\alpha}\,</math>,
<math>y = y_0 + v_0 t \sin{\alpha} - \frac{1}{2} g t^2</math>.

Obvykle je vhodné položit počátek soustavy souřadnic do bodu <math>[x_0,y_0]</math>.


Z uvedených rovnic lze určit maximální dosaženou výšku:

<math>y_{max} = y_0 + \frac{1}{2} \frac{v_0^2 \sin^2{\alpha} }{g}</math>

a délku vrhu (tedy vzdálenost, po které těleso klesne do původní výšky), neboli dostřel:

<math>d = \frac{v_0^2}{g} \sin{2\alpha}</math>

Při pohybu v prostředí s nezanedbatelným odporem opisuje těleso asymetrickou balistickou křivku, u které je délka vrhu kratší než u pohybu při zanedbání odporu vzduchu.

Speciální případy

  • Volný pád - Počáteční rychlost je nulová a pro rychlost dostáváme vztah <math>v=gt</math>. Dráha, kterou těleso urazí od počátku do času <math>t</math> je <math>s=\frac{1}{2}gt^2</math>.
  • Svislý vrh vzhůru - Celý pohyb probíhá pouze ve směru osy y (elevační úhel <math>\alpha=\frac{\pi}{2}</math>). Počáteční rychlost <math>v_0</math> je nenulová (pro nulovou počáteční rychlost by se jednalo o volný pád). Pro rychlost pak dostaneme vztah <math>v=v_0-gt</math>. Vzdálenost (okamžitá výška) tělesa nad bodem, z něhož bylo vrženo, je dána vztahem <math>s=v_0t-\frac{1}{2}gt^2</math>. V nejvyšším bodě výstupu je rychlost nulová. Odsud získáme dobu výstupu <math>T=\frac{v_0}{g}</math>. Dosazením do vztahu pro dráhu dostaneme po úpravě výšku výstupu <math>h=\frac{v_0^2}{2g}</math>. Z nejvyššího bodu trajektorie padá těleso zpět volným pádem a bodu, z něhož bylo vrženo dosáhne za dobu, která se rovná době výstupu.
  • Vodorovný vrh - Při vodorovném vrhu směřuje počáteční rychlost ve směru osy x (elevační úhel <math>\alpha=0</math>). Délka vrhu je vzdálenost za kterou dojde ke změně y-ové souřadnice o velikost <math>h</math>. Platí pro ni doba letu <math>T=\sqrt{\frac{2h}{g}}</math>. Dosazením doby letu do vztahu pro x-ovou souřadnici získáme délku vrhu <math>d=v_0\sqrt{\frac{2h}{g}}</math>.

Související články