V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.

Plošný integrál

Z Multimediaexpo.cz

Plošný integrál má podobný smysl jako křivkový integrál. U křivkového určujeme průběh funkce po křivce, u plošného určujeme průběh po ploše. Plošný integrál má využití při určovaní jiných fyzikálních veličin (např. z nerovnoměrně rozložené hustoty po ploše můžeme zjistit hmotnost plochy). Stejně tak jako u křivkového integrálu rozeznáváme i zde dva druhy.

Klíčovým je nejprve mít definovanou plochu, na které integrujeme. Pro výpočet integrálu je nejvýhodnější mít plochu definovanou parametricky, ve 3D tedy:

\(\rm{r}=\rm{r}(u,v)</math>

Část plochy, přes kterou se integruje představuje nějakou množinu v (u,v).

Plošný integrál prvního druhu

Máme spočítat

\(\int_A f(x) dS</math>

Nejprve vypočteme vektory \(\frac{d\rm{r}}{du}</math> a \(\frac{d\rm{r}}{dv}</math>, ze kterých už snadno dostaneme obsah elementu plochy.

\(dS = |\frac{d\rm{r}}{du} \times \frac{d\rm{r}}{dv}| du dv</math>

Dosazením za \(dS</math> převedeme integrál na ploše na 2D "plochý" integrál.

Externí odkazy