Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Plošný integrál
Z Multimediaexpo.cz
m (1 revizi) |
m (Nahrazení textu „</math>“ textem „\)</big>“) |
||
(Nejsou zobrazeny 2 mezilehlé verze.) | |||
Řádka 1: | Řádka 1: | ||
- | + | '''Plošný integrál''' má podobný smysl jako [[křivkový integrál]]. U křivkového určujeme průběh funkce po křivce, u plošného určujeme průběh po ploše. Plošný integrál má využití při určovaní jiných fyzikálních veličin (např. z nerovnoměrně rozložené hustoty po ploše můžeme zjistit hmotnost plochy). Stejně tak jako u křivkového integrálu rozeznáváme i zde dva druhy. | |
+ | Klíčovým je nejprve mít definovanou plochu, na které integrujeme. Pro výpočet integrálu je nejvýhodnější mít plochu definovanou parametricky, ve 3D tedy: | ||
+ | |||
+ | <big>\(\rm{r}=\rm{r}(u,v)\)</big> | ||
+ | |||
+ | Část plochy, přes kterou se integruje představuje nějakou množinu v (u,v). | ||
+ | |||
+ | == Plošný integrál prvního druhu == | ||
+ | Máme spočítat | ||
+ | |||
+ | <big>\(\int_A f(x) dS\)</big> | ||
+ | |||
+ | Nejprve vypočteme vektory <big>\(\frac{d\rm{r}}{du}\)</big> a <big>\(\frac{d\rm{r}}{dv}\)</big>, ze kterých už snadno dostaneme obsah elementu plochy. | ||
+ | |||
+ | <big>\(dS = |\frac{d\rm{r}}{du} \times \frac{d\rm{r}}{dv}| du dv\)</big> | ||
+ | |||
+ | Dosazením za <big>\(dS\)</big> převedeme integrál na ploše na 2D "plochý" integrál. | ||
+ | |||
+ | == Externí odkazy == | ||
+ | |||
+ | {{Článek z Wikipedie}} | ||
[[Kategorie:Integrální počet]] | [[Kategorie:Integrální počet]] |
Aktuální verze z 14. 8. 2022, 14:53
Plošný integrál má podobný smysl jako křivkový integrál. U křivkového určujeme průběh funkce po křivce, u plošného určujeme průběh po ploše. Plošný integrál má využití při určovaní jiných fyzikálních veličin (např. z nerovnoměrně rozložené hustoty po ploše můžeme zjistit hmotnost plochy). Stejně tak jako u křivkového integrálu rozeznáváme i zde dva druhy.
Klíčovým je nejprve mít definovanou plochu, na které integrujeme. Pro výpočet integrálu je nejvýhodnější mít plochu definovanou parametricky, ve 3D tedy:
\(\rm{r}=\rm{r}(u,v)\)
Část plochy, přes kterou se integruje představuje nějakou množinu v (u,v).
Plošný integrál prvního druhu
Máme spočítat
\(\int_A f(x) dS\)
Nejprve vypočteme vektory \(\frac{d\rm{r}}{du}\) a \(\frac{d\rm{r}}{dv}\), ze kterých už snadno dostaneme obsah elementu plochy.
\(dS = |\frac{d\rm{r}}{du} \times \frac{d\rm{r}}{dv}| du dv\)
Dosazením za \(dS\) převedeme integrál na ploše na 2D "plochý" integrál.
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |