Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Plošný integrál
Z Multimediaexpo.cz
m (1 revizi) |
(+ Masivní vylepšení) |
||
Řádka 1: | Řádka 1: | ||
- | + | '''Plošný integrál''' má podobný smysl jako [[křivkový integrál]]. U křivkového určujeme průběh funkce po křivce, u plošného určujeme průběh po ploše. Plošný integrál má využití při určovaní jiných fyzikálních veličin (např. z nerovnoměrně rozložené hustoty po ploše můžeme zjistit hmotnost plochy). Stejně tak jako u křivkového integrálu rozeznáváme i zde dva druhy. | |
+ | Klíčovým je nejprve mít definovanou plochu, na které integrujeme. Pro výpočet integrálu je nejvýhodnější mít plochu definovanou parametricky, ve 3D tedy: | ||
+ | |||
+ | <math>\rm{r}=\rm{r}(u,v)</math> | ||
+ | |||
+ | Část plochy, přes kterou se integruje představuje nějakou množinu v (u,v). | ||
+ | |||
+ | == Plošný integrál prvního druhu == | ||
+ | Máme spočítat | ||
+ | |||
+ | <math>\int_A f(x) dS</math> | ||
+ | |||
+ | Nejprve vypočteme vektory <math>\frac{d\rm{r}}{du}</math> a <math>\frac{d\rm{r}}{dv}</math>, ze kterých už snadno dostaneme obsah elementu plochy. | ||
+ | |||
+ | <math>dS = |\frac{d\rm{r}}{du} \times \frac{d\rm{r}}{dv}| du dv</math> | ||
+ | |||
+ | Dosazením za <math>dS</math> převedeme integrál na ploše na 2D "plochý" integrál. | ||
+ | |||
+ | == Externí odkazy == | ||
+ | |||
+ | {{Článek z Wikipedie}} | ||
[[Kategorie:Integrální počet]] | [[Kategorie:Integrální počet]] |
Verze z 31. 8. 2014, 09:49
Plošný integrál má podobný smysl jako křivkový integrál. U křivkového určujeme průběh funkce po křivce, u plošného určujeme průběh po ploše. Plošný integrál má využití při určovaní jiných fyzikálních veličin (např. z nerovnoměrně rozložené hustoty po ploše můžeme zjistit hmotnost plochy). Stejně tak jako u křivkového integrálu rozeznáváme i zde dva druhy.
Klíčovým je nejprve mít definovanou plochu, na které integrujeme. Pro výpočet integrálu je nejvýhodnější mít plochu definovanou parametricky, ve 3D tedy:
<math>\rm{r}=\rm{r}(u,v)</math>
Část plochy, přes kterou se integruje představuje nějakou množinu v (u,v).
Plošný integrál prvního druhu
Máme spočítat
<math>\int_A f(x) dS</math>
Nejprve vypočteme vektory <math>\frac{d\rm{r}}{du}</math> a <math>\frac{d\rm{r}}{dv}</math>, ze kterých už snadno dostaneme obsah elementu plochy.
<math>dS = |\frac{d\rm{r}}{du} \times \frac{d\rm{r}}{dv}| du dv</math>
Dosazením za <math>dS</math> převedeme integrál na ploše na 2D "plochý" integrál.
Externí odkazy
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |