V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Multimediaexpo.cz je již 18 let na českém internetu !!
V tiskové zprávě k 18. narozeninám brzy najdete nové a zásadní informace.
Variační koeficient
Z Multimediaexpo.cz
(Rozdíly mezi verzemi)
m (1 revizi) |
(+ Výrazné vylepšení) |
||
Řádka 1: | Řádka 1: | ||
- | + | '''Variační koeficient''' je [[charakteristika náhodné veličiny|charakteristikou]] variability [[rozdělení pravděpodobnosti]] [[náhodná veličina|náhodné veličiny]]. | |
+ | == Definice == | ||
+ | Variační koeficient je definovaný jako podíl [[směrodatná odchylka|směrodatné odchylky]] a [[absolutní hodnota|absolutní hodnoty]] ze [[střední hodnota|střední hodnoty]] | ||
+ | :<math>\frac{\sqrt{D(X)}}{|\operatorname{E}(X)|}</math>, | ||
+ | kde <math>D(X)</math> je [[rozptyl (statistika)|rozptyl]], tzn. <math>\sqrt{D(X)}</math> je [[směrodatná odchylka]], a <math>\operatorname{E}(X)</math> je [[střední hodnota]]. | ||
+ | |||
+ | == Související články == | ||
+ | * [[Charakteristika náhodné veličiny]] | ||
+ | |||
+ | |||
+ | {{Článek z Wikipedie}} | ||
[[Kategorie:Statistika]] | [[Kategorie:Statistika]] |
Verze z 1. 3. 2014, 21:00
Variační koeficient je charakteristikou variability rozdělení pravděpodobnosti náhodné veličiny.
Definice
Variační koeficient je definovaný jako podíl směrodatné odchylky a absolutní hodnoty ze střední hodnoty
- <math>\frac{\sqrt{D(X)}}{|\operatorname{E}(X)|}</math>,
kde <math>D(X)</math> je rozptyl, tzn. <math>\sqrt{D(X)}</math> je směrodatná odchylka, a <math>\operatorname{E}(X)</math> je střední hodnota.
Související články
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |