The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).

Hölderova nerovnost

Z Multimediaexpo.cz

(Rozdíly mezi verzemi)
(+ Nový článek)
m (Nahrazení textu „</math>“ textem „\)</big>“)
 
(Nejsou zobrazeny 2 mezilehlé verze.)
Řádka 2: Řádka 2:
== Znění ==
== Znění ==
-
Na [[Prostor s mírou|prostoru s mírou]] <math>(X, \Sigma, \mu)</math> mějme μ-měřitelné funkce <math>f, g</math> na <math>X</math>. Dále nechť existují čísla <math>1 \le p, q \le \infty</math>, taková, že: <math>1/p + 1/q = 1</math>. Pak platí:
+
Na [[Prostor s mírou|prostoru s mírou]] <big>\((X, \Sigma, \mu)\)</big> mějme μ-měřitelné funkce <big>\(f, g\)</big> na <big>\(X\)</big>. Dále nechť existují čísla <big>\(1 \le p, q \le \infty\)</big>, taková, že: <big>\(1/p + 1/q = 1\)</big>. Pak platí:
-
:<math>\|f \cdot g \|_1 \le \|f\|_p \cdot \|g\|_q</math>.
+
:<big>\(\|f \cdot g \|_1 \le \|f\|_p \cdot \|g\|_q\)</big>.
== Důležité speciální případy ==
== Důležité speciální případy ==
-
Pro následující případy předpokládejme, že <math>1 < p,q < \infty</math> a <math>1/p+1/q = 1</math>.
+
Pro následující případy předpokládejme, že <big>\(1 < p,q < \infty\)</big> a <big>\(1/p+1/q = 1\)</big>.
=== Aritmetická míra ===
=== Aritmetická míra ===
-
V případě <math>n</math>-rozměrného [[Eukleidovský prostor|Eukleidovského prostoru]] <math>a_k, b_k \in \mathbb{C}^n</math>, s množinou <math> X = \{1, ..., n\}</math> a <math>\mu</math> [[Aritmetická míra|aritmetickou mírou]] dostáváme:
+
V případě <big>\(n\)</big>-rozměrného [[Eukleidovský prostor|Eukleidovského prostoru]] <big>\(a_k, b_k \in \mathbb{C}^n\)</big>, s množinou <big>\( X = \{1, ..., n\}\)</big> a <big>\(\mu\)</big> [[Aritmetická míra|aritmetickou mírou]] dostáváme:
-
:<math>\sum_{k=1}^n|a_kb_k|\leq\left(\sum_{k=1}^n|a_k|^p\right)^{1/p} \left(\sum_{k=1}^n|b_k|^q\right)^{1/q}</math>.
+
:<big>\(\sum_{k=1}^n|a_kb_k|\leq\left(\sum_{k=1}^n|a_k|^p\right)^{1/p} \left(\sum_{k=1}^n|b_k|^q\right)^{1/q}\)</big>.
-
Rovnost nastává, právě když <math>|b_k|=c|a_k|^{p-1}</math>.
+
Rovnost nastává, právě když <big>\(|b_k|=c|a_k|^{p-1}\)</big>.
=== L<sup>p</sup> prostory ===
=== L<sup>p</sup> prostory ===
-
Pokud <math>f \in L^p(X), g \in L^q(X)</math>, tak <math>f \cdot g \in L^1(X)</math> a navíc:
+
Pokud <big>\(f \in L^p(X), g \in L^q(X)\)</big>, tak <big>\(f \cdot g \in L^1(X)\)</big> a navíc:
-
:<math>\int_X |f \cdot g | \, \mathrm{d} \mu \le \left(\int_X |f|^p \, \mathrm{d} \mu \right)^{1/p} \cdot \left(\int_X |g|^q \, \mathrm{d} \mu \right)^{1/q}</math>
+
:<big>\(\int_X |f \cdot g | \, \mathrm{d} \mu \le \left(\int_X |f|^p \, \mathrm{d} \mu \right)^{1/p} \cdot \left(\int_X |g|^q \, \mathrm{d} \mu \right)^{1/q}\)</big>
-
Pro <math>p = q = 2</math> pak dostáváme [[Cauchyho–Schwarzova nerovnost|Cauchyho–Schwarzovu nerovnost]], Hölderova nerovnost je tedy jejím zobecněním.
+
Pro <big>\(p = q = 2\)</big> pak dostáváme [[Cauchyho–Schwarzova nerovnost|Cauchyho–Schwarzovu nerovnost]], Hölderova nerovnost je tedy jejím zobecněním.
== Důkaz ==
== Důkaz ==
Je důsledkem [[Youngova nerovnost|Youngovy nerovnosti]], která se dá formulovat i takto:
Je důsledkem [[Youngova nerovnost|Youngovy nerovnosti]], která se dá formulovat i takto:
-
Pro všechna reálná čísla r, s a <math>x\in<0,1></math> platí
+
Pro všechna reálná čísla r, s a <big>\(x\in<0,1>\)</big> platí
-
<math>xr+(1-x)s\geq r^xs^{1-x}</math>. Rovnost nastává, právě když r=s nebo <math>x\in\{0,1\}</math>. Sečtením těchto nerovností dostaneme požadovanou Hölderovu nerovnost.
+
<big>\(xr+(1-x)s\geq r^xs^{1-x}\)</big>.<br />Rovnost nastává, právě když r=s nebo <big>\(x\in\{0,1\}\)</big>. Sečtením těchto nerovností dostaneme požadovanou Hölderovu nerovnost.

Aktuální verze z 14. 8. 2022, 14:52

Hölderova nerovnost je důležitou nerovností v matematické analýze, významnou zejména při zkoumání Lp prostorů.

Obsah

Znění

Na prostoru s mírou \((X, \Sigma, \mu)\) mějme μ-měřitelné funkce \(f, g\) na \(X\). Dále nechť existují čísla \(1 \le p, q \le \infty\), taková, že: \(1/p + 1/q = 1\). Pak platí:

\(\|f \cdot g \|_1 \le \|f\|_p \cdot \|g\|_q\).

Důležité speciální případy

Pro následující případy předpokládejme, že \(1 < p,q < \infty\) a \(1/p+1/q = 1\).

Aritmetická míra

V případě \(n\)-rozměrného Eukleidovského prostoru \(a_k, b_k \in \mathbb{C}^n\), s množinou \( X = \{1, ..., n\}\) a \(\mu\) aritmetickou mírou dostáváme:

\(\sum_{k=1}^n|a_kb_k|\leq\left(\sum_{k=1}^n|a_k|^p\right)^{1/p} \left(\sum_{k=1}^n|b_k|^q\right)^{1/q}\).

Rovnost nastává, právě když \(|b_k|=c|a_k|^{p-1}\).

Lp prostory

Pokud \(f \in L^p(X), g \in L^q(X)\), tak \(f \cdot g \in L^1(X)\) a navíc:

\(\int_X |f \cdot g | \, \mathrm{d} \mu \le \left(\int_X |f|^p \, \mathrm{d} \mu \right)^{1/p} \cdot \left(\int_X |g|^q \, \mathrm{d} \mu \right)^{1/q}\)

Pro \(p = q = 2\) pak dostáváme Cauchyho–Schwarzovu nerovnost, Hölderova nerovnost je tedy jejím zobecněním.

Důkaz

Je důsledkem Youngovy nerovnosti, která se dá formulovat i takto: Pro všechna reálná čísla r, s a \(x\in<0,1>\) platí \(xr+(1-x)s\geq r^xs^{1-x}\).
Rovnost nastává, právě když r=s nebo \(x\in\{0,1\}\). Sečtením těchto nerovností dostaneme požadovanou Hölderovu nerovnost.