The English encyclopedia Allmultimedia.org will be launched in two phases.
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).
The final launch of the Allmultimedia.org will take place on February 27, 2026
(shortly after the 2026 Winter Olympics).
Seznam integrálů hyperbolických funkcí
Z Multimediaexpo.cz
Toto je seznam integrálů (primitivních funkcí) hyperbolických funkcí.
- \(\int\sinh cx\,\mathrm{d}x = \frac{1}{c}\cosh cx\)
- \(\int\cosh cx\,\mathrm{d}x = \frac{1}{c}\sinh cx\)
- \(\int\sinh^2 cx\,\mathrm{d}x = \frac{1}{4c}\sinh 2cx - \frac{x}{2}\)
- \(\int\cosh^2 cx\,\mathrm{d}x = \frac{1}{4c}\sinh 2cx + \frac{x}{2}\)
- \(\int\sinh^n cx\,\mathrm{d}x = \frac{1}{cn}\sinh^{n-1} cx\cosh cx - \frac{n-1}{n}\int\sinh^{n-2} cx\,\mathrm{d}x \qquad\mbox{(pro }n>0\mbox{)}\)
- také: \(\int\sinh^n cx\,\mathrm{d}x = \frac{1}{c(n+1)}\sinh^{n+1} cx\cosh cx - \frac{n+2}{n+1}\int\sinh^{n+2}cx\,\mathrm{d}x \qquad\mbox{(pro }n<0\mbox{, }n\neq -1\mbox{)}\)
- \(\int\cosh^n cx\,\mathrm{d}x = \frac{1}{cn}\sinh cx\cosh^{n-1} cx + \frac{n-1}{n}\int\cosh^{n-2} cx\,\mathrm{d}x \qquad\mbox{(pro }n>0\mbox{)}\)
- také: \(\int\cosh^n cx\,\mathrm{d}x = -\frac{1}{c(n+1)}\sinh cx\cosh^{n+1} cx - \frac{n+2}{n+1}\int\cosh^{n+2}cx\,\mathrm{d}x \qquad\mbox{(pro }n<0\mbox{, }n\neq -1\mbox{)}\)
- \(\int\frac{\mathrm{d}x}{\sinh cx} = \frac{1}{c} \ln\left|\tanh\frac{cx}{2}\right|\)
- také: \(\int\frac{\mathrm{d}x}{\sinh cx} = \frac{1}{c} \ln\left|\frac{\cosh cx - 1}{\sinh cx}\right|\)
- také: \(\int\frac{\mathrm{d}x}{\sinh cx} = \frac{1}{c} \ln\left|\frac{\sinh cx}{\cosh cx + 1}\right|\)
- také: \(\int\frac{\mathrm{d}x}{\sinh cx} = \frac{1}{c} \ln\left|\frac{\cosh cx - 1}{\cosh cx + 1}\right|\)
- \(\int\frac{\mathrm{d}x}{\cosh cx} = \frac{2}{c} \arctan e^{cx}\)
- \(\int\frac{\mathrm{d}x}{\sinh^n cx} = \frac{\cosh cx}{c(n-1)\sinh^{n-1} cx}-\frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\sinh^{n-2} cx} \qquad\mbox{(pro }n\neq 1\mbox{)}\)
- \(\int\frac{\mathrm{d}x}{\cosh^n cx} = \frac{\sinh cx}{c(n-1)\cosh^{n-1} cx}+\frac{n-2}{n-1}\int\frac{\mathrm{d}x}{\cosh^{n-2} cx} \qquad\mbox{(pro }n\neq 1\mbox{)}\)
- \(\int\frac{\cosh^n cx}{\sinh^m cx} \mathrm{d}x = \frac{\cosh^{n-1} cx}{c(n-m)\sinh^{m-1} cx} + \frac{n-1}{n-m}\int\frac{\cosh^{n-2} cx}{\sinh^m cx} \mathrm{d}x \qquad\mbox{(pro }m\neq n\mbox{)}\)
- také: \(\int\frac{\cosh^n cx}{\sinh^m cx} \mathrm{d}x = -\frac{\cosh^{n+1} cx}{c(m-1)\sinh^{m-1} cx} + \frac{n-m+2}{m-1}\int\frac{\cosh^n cx}{\sinh^{m-2} cx} \mathrm{d}x \qquad\mbox{(pro }m\neq 1\mbox{)}\)
- také: \(\int\frac{\cosh^n cx}{\sinh^m cx} \mathrm{d}x = -\frac{\cosh^{n-1} cx}{c(m-1)\sinh^{m-1} cx} + \frac{n-1}{m-1}\int\frac{\cosh^{n-2} cx}{\sinh^{m-2} cx} \mathrm{d}x \qquad\mbox{(pro }m\neq 1\mbox{)}\)
- \(\int\frac{\sinh^m cx}{\cosh^n cx} \mathrm{d}x = \frac{\sinh^{m-1} cx}{c(m-n)\cosh^{n-1} cx} + \frac{m-1}{m-n}\int\frac{\sinh^{m-2} cx}{\cosh^n cx} \mathrm{d}x \qquad\mbox{(pro }m\neq n\mbox{)}\)
- také: \(\int\frac{\sinh^m cx}{\cosh^n cx} \mathrm{d}x = \frac{\sinh^{m+1} cx}{c(n-1)\cosh^{n-1} cx} + \frac{m-n+2}{n-1}\int\frac{\sinh^m cx}{\cosh^{n-2} cx} \mathrm{d}x \qquad\mbox{(pro }n\neq 1\mbox{)}\)
- také: \(\int\frac{\sinh^m cx}{\cosh^n cx} \mathrm{d}x = -\frac{\sinh^{m-1} cx}{c(n-1)\cosh^{n-1} cx} + \frac{m-1}{n-1}\int\frac{\sinh^{m -2} cx}{\cosh^{n-2} cx} \mathrm{d}x \qquad\mbox{(pro }n\neq 1\mbox{)}\)
- \(\int x\sinh cx\,\mathrm{d}x = \frac{1}{c} x\cosh cx - \frac{1}{c^2}\sinh cx\)
- \(\int x\cosh cx\,\mathrm{d}x = \frac{1}{c} x\sinh cx - \frac{1}{c^2}\cosh cx\)
- \(\int \tanh cx\,\mathrm{d}x = \frac{1}{c}\ln|\cosh cx|\)
- \(\int \coth cx\,\mathrm{d}x = \frac{1}{c}\ln|\sinh cx|\)
- \(\int \tanh^n cx\,\mathrm{d}x = -\frac{1}{c(n-1)}\tanh^{n-1} cx+\int\tanh^{n-2} cx\,\mathrm{d}x \qquad\mbox{(pro }n\neq 1\mbox{)}\)
- \(\int \coth^n cx\,\mathrm{d}x = -\frac{1}{c(n-1)}\coth^{n-1} cx+\int\coth^{n-2} cx\,\mathrm{d}x \qquad\mbox{(pro }n\neq 1\mbox{)}\)
- \(\int \sinh bx \sinh cx\,\mathrm{d}x = \frac{1}{b^2-c^2} (b\sinh cx \cosh bx - c\cosh cx \sinh bx) \qquad\mbox{(pro }b^2\neq c^2\mbox{)}\)
- \(\int \cosh bx \cosh cx\,\mathrm{d}x = \frac{1}{b^2-c^2} (b\sinh bx \cosh cx - c\sinh cx \cosh bx) \qquad\mbox{(pro }b^2\neq c^2\mbox{)}\)
- \(\int \cosh bx \sinh cx\,\mathrm{d}x = \frac{1}{b^2-c^2} (b\sinh bx \sinh cx - c\cosh bx \cosh cx) \qquad\mbox{(pro }b^2\neq c^2\mbox{)}\)
- \(\int \sinh (ax+b)\sin (cx+d)\,\mathrm{d}x = \frac{a}{a^2+c^2}\cosh(ax+b)\sin(cx+d)-\frac{c}{a^2+c^2}\sinh(ax+b)\cos(cx+d)\)
- \(\int \sinh (ax+b)\cos (cx+d)\,\mathrm{d}x = \frac{a}{a^2+c^2}\cosh(ax+b)\cos(cx+d)+\frac{c}{a^2+c^2}\sinh(ax+b)\sin(cx+d)\)
- \(\int \cosh (ax+b)\sin (cx+d)\,\mathrm{d}x = \frac{a}{a^2+c^2}\sinh(ax+b)\sin(cx+d)-\frac{c}{a^2+c^2}\cosh(ax+b)\cos(cx+d)\)
- \(\int \cosh (ax+b)\cos (cx+d)\,\mathrm{d}x = \frac{a}{a^2+c^2}\sinh(ax+b)\cos(cx+d)+\frac{c}{a^2+c^2}\cosh(ax+b)\sin(cx+d)\)
Externí odkazy
| Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
|---|
| Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |
