Ve středu 26. března 2025 se podařilo týmu Multimediaexpo.cz
dokončit zcela nový balíček 1 000 000 fotografií na plných 100 procent !
Nedostižná hranice 4 000 000 fotografií se února 2026 už nedožije...
FFresh emotion happy.png

Frobeniova věta

Z Multimediaexpo.cz

Frobeniova věta z lineární algebry udává nutnou a postačující podmínku pro existenci řešení soustavy lineárních rovnic, konkrétně v závislosti na hodnostech matice soustavy a její rozšířené matice.

Je pojmenována podle německého matematika Ferdinanda Georga Frobenia (* 1849, † 1917).

Obsah

[skrýt]

Formální znění

Nehomogenní soustava lineárních algebraických rovnic má řešení, právě když hodnost matice soustavy je rovna hodnosti rozšířené matice soustavy: rank(A|b)=rankA.

V tomto případě je soustava vnitřně bezrozporná. Pokud je hodnost matice A rovna počtu neznámých, má soustava jedno řešení. Pokud je rankA menší než počet neznámých, je řešení více.

Hodnost matice A nemůže být z definice větší než počet neznámých, ale je-li hodnost rozšířené matice soustavy (A|b) větší než počet neznámých, nemůže být splněna podmínka Frobeniovy věty a soustava proto nemá žádné řešení.

V případě, že soustava má řešení, pak množina řešení tvoří afinní podprostor dimenze <math display="inline">n-\operatorname{rank}\boldsymbol{A}\)</big>, kde n značí počet neznámých.

Ukázka

Soustava rovnic v oboru reálných čísel

x+y+2z=3x+y+z=12x+2y+2z=2

má matici soustavy

A=(112111222)

a rozšířenou matici

(A|b)=(112311112222)

Protože obě mají stejnou hodnost, konkrétně rankA=rank(A|b)=2, existuje alespoň jedno řešení. Navíc je jejich hodnost menší než počet neznámých, tj. 3, a proto existuje nekonečně mnoho řešení.

Naopak soustava

x+y+2z=3x+y+z=12x+2y+2z=5

má matici soustavy

A=(112111222)

a rozšířenou matici

(A|b)=(112311112225)

V tomto případě má matice soustavy hodnost 2, avšak rozšířená matice má hodnost 3; takže tato soustava rovnic nemá řešení. Nárůst počtu lineárně nezávislých sloupců způsobil, že soustava rovnic je nekonzistentní.

Pojmenování

Věta se ve světě uvádí i pod jmény dalších matematiků, kteří na této otázce pracovali – patří sem Leopold Kronecker, Alfredo Capelli, Georges Fontené a Eugène Rouché:

  • Konkrétně se nazývá Rouchého–Capelliho věta v anglicky a portugalsky mluvících zemích a Itálii
  • Kroneckerova-Capelliho věta v německy mluvících zemích, Polsku, Rumunsku, Srbsku a Rusku
  • Rouchého–Fonténého věta ve frankofonním světě a Rouchého–Frobeniova věta ve španělsky mluvících zemích.

Související články

Literatura

  • BEČVÁŘ, Jindřich. Lineární algebra. 1.. vyd. Praha : Matfyzpress. ISBN 978-80-7378-392-1.  
  • HLADÍK, Milan. Lineární algebra (nejen) pro informatiky. 1.. vyd. Praha : Matfyzpress. ISBN 978-80-7378-378-5. S. 39.  
  • OLŠÁK, Petr. Lineární algebra [online]. Praha : 2007, [cit. 2023-02-20]. Dostupné online.