Absolutní nula
Z Multimediaexpo.cz
Absolutní nula je hypotetický stav látky, ve které se zastaví veškerý tepelný pohyb částic. Absolutní nula je počátek stupnice absolutní teploty, označuje také pro termodynamickou teplotu T = 0 K, tj. – 273,15 °C.
Obsah |
Historie
Absolutní nula byla poprvé navržena Guillaumem Amontonsem v roce 1702, který zkoumal vztah mezi tlakem a teplotou v plynech. Chyběly mu dostatečně přesné teploměry tak byly jeho výsledky velmi nepřesné, přesto prokázal, že tlak plynu se zvětší asi o jednu třetinu mezi “chladnou” teplotou a bodem varu vody. Jeho práce jej dovedla k teorii, že dostatečné snížení teploty by vedlo k úbytku tlaku. Problém ovšem byl, že všechny reálné plyny zkapalní během zchlazování k absolutní nule.
V roce 1848 William Thomson (lord Kelvin of Largs) navrhnul termodynamickou teplotní stupnici. Toto pojetí se vymanilo z omezení plynných látek a definovalo absolutní nulu jako takovou teplotu látky, ve které již nelze odebírat žádné další teplo.
V roce 2003 kolektiv vědců z Massachusettského technologického institutu v Cambridge (A.E. Leanhardt, T.A. Pasquini, M. Saba, A. Schirotzek, Y. Shin, D. Kielpinski, D.E. Pritchard a W. Ketterle) dosáhli do té doby nejnižší mechanicky dosažené teploty 450 pikokelvinů = 0,000 000 000 45 K.
Vlastnosti
Třetí věta termodynamická tvrdí, že absolutní nuly nelze nikdy zcela dosáhnout, tj. absolutní nula je jen teoretická teplota. Lze se k ní ovšem limitně přiblížit velice blízko. Podařilo se již laboratorně dosáhnout teplot ve zlomcích tisíciny Kelvina. V roce 1994 naměřili finští fyzici pouhých 280 pK = 0,000 000 000 28 K.[1]
Z pohledu statistické fyziky je absolutní nula stav tělesa s nejmenší možnou (nikoliv však nutně nulovou – viz např. systém složený z kvantově mechanických harmonických oscilátorů) vnitřní energií.
Existuje celá řada systémů, jež v blízkosti absolutní nuly zcela mění chování. Typickým příkladem je Bose-Einsteinův kondenzát a s ním spojeny jevy supravodivosti a supratekutosti.
V odborné literatuře se zavádí pojem záporné termodynamické teploty. To je možné pouze u systému s omezenou vnitřní energií shora i zdola (tj. s omezeným energetickým spektrem) a konečným počtem energetických stavů. Jedná se o situaci s inverzním obsazením stavů (tj. systém má více obsazené stavy s vysokou energií než nízkou). Tato situace však neporušuje platnost třetího termodynamického zákona, neboť takový systém se chová, jako by byl teplejší, než systém s nekonečnou teplotou. Tedy posloupnost stoupajících teplot lze formálně zapsat
- \(0+\epsilon<\infty<-\infty<0-\epsilon\), kde \(\epsilon \,\) označuje infinitezimální přírůstek teploty.
Jako příklad praktického použití inverzního obsazení stavů lze uvést laser.
Související články
Reference
- ↑ Milestones - Achievements in ultra low temperature physics [online]. Low Temperature Laboratory - Helsinki University of Technology, rev. 8.1.2008, [cit. 2008-07-21]. Dostupné online. (Anglicky)
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |