V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Samarium

Z Multimediaexpo.cz

Verze z 25. 6. 2010, 15:55; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)
Samarium
Samarium
Atomové číslo62
Relativní atomová hmotnost150,36(2) amu
Elektronová konfigurace[Xe] 4f6 6s2
SkupenstvíPevné
Teplota tání1072 °C, (1345 K)
Teplota varu1794 °C, (2067 K)
Elektronegativita (Pauling) 1,17
Hustota 7,52 g/cm3
Hustota při teplotě tání 7,16 g/cm3
Registrační číslo CAS7440-19-9
Vzhled
Atomový poloměr 1,85 Å (185 pm)
Výparné teplo 165 kJ/mol
Skupenské teplo tání 8,62 kJ/mol
Tepelná kapacita29,54 J.mol-1.K-1 (25 °C)
Ionisační energie Pm→Pm+ 544,5 kJ/mol
Ionisační energie Pm+→Pm2+ 1070 kJ/mol
Ionisační energie Pm2+→Pm3+ 2260 kJ/mol

Samarium, chemická značka Sm, (lat. Samarium) je měkký stříbřitě bílý, přechodný kovový prvek, šestý člen skupiny lanthanoidů. Hlavní uplatnění nalézá ve výrobě mimořádně silných permanentních magnetů a slouží také k výrobě speciálních skel a keramiky .

Obsah

Základní fyzikálně-chemické vlastnosti

Samarium je stříbřitě bílý, měkký přechodný kov. Chemicky je samarium méně reaktivní než předchozí prvky ze skupina lanthanoidů. Na vzduch je relativně stálé a ke vzplanutí dochází až při teplotě nad 150 °C. S vodou reaguje samarium za vzniku plynného vodíku, snadno se rozpouští v běžných minerálních kyselinách. Ve sloučeninách se vyskytuje prakticky pouze v mocenství Sm+3.

Chemické vlastnosti jeho solí jsou značně podobné sloučeninám hliníku a ostatních lanthanoidů. Všechny tyto prvky tvoří například vysoce stabilní oxidy, které nereagují s vodou a jen velmi obtížně se redukují. Ze solí anorganických kyselin jsou důležité především fluoridy a fosforečnany, jejich nerozpustnost ve vodě se používá k separaci lanthanoidů od jiných kovových iontů. Další nerozpustnou sloučeninou je šťavelan, který je možno použít ke gravimetrickému stanovení těchto prvků po jejich vzájemné separaci.

Historie objevu

Roku 1853 objevil švýcarský chemik Jean Charles Galissard de Marignac neznámé emisní linie ve spektru didymia a přiřadil je doposud neobjevenému prvku z řady lanthanoidů.

Izolaci čistého prvku provedl teprve roku 1879 francouzský chemik Paul Émile Lecoq de Boisbaudran. Vycházel přitom z minerálu samarskitu o složení ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16). Prvek byl poté pojmenován podle tohoto minerálu, který nesl jméno ruského důlního specialisty, plukovníka Samarského.

Výskyt a výroba

Samarium je v zemské kůře obsaženo v koncentraci asi 6 mg/kg, o jeho obsahu v mořské vodě údaje chybí. Ve vesmíru připadá jeden atom samaria na 100 miliard atomů vodíku.

V přírodě se samarium vyskytuje pouze ve formě sloučenin. Neexistují však ani minerály, v nichž by se některé lanthanoidy (prvky vzácných zemin) vyskytovaly samostatně, ale vždy se jedná o minerály směsné, které obsahují prakticky všechny prvky této skupiny. Mezi nejznámější patří monazity (Ce, La, Th, Nd, Y)PO4 a xenotim, chemicky fosforečnany lanthanoidů a dále bastnäsity (Ce, La, Y)CO3F– směsné flourouhličitany prvků vzácných zemin. Pro samarium je typický již výše uvedený minerál samarskit ((Y,Ce,U,Fe)3(Nb,Ta,Ti)5O16). Velká ložiska těchto rud se nalézají ve Skandinávii, USA, Číně a Vietnamu. Významným zdrojem jsou i fosfátové suroviny - apatity z poloostrova Kola v Rusku Při průmyslové výrobě prvků vzácných se jejich rudy nejprve louží směsí kyseliny sírové a chlorovodíkové a ze vzniklého roztoku solí se přídavkem hydroxidu sodného vysráží hydroxidy. Separace jednotlivých prvků se provádí řadou různých postupů – kapalinovou extrakcí, za použití ionexových kolon nebo selektivním srážením nerozpustných komplexních solí.

Příprava čistého kovu se obvykle provádí elektrolýzou směsi roztavených chloridů samaritého SmCl3, vápenatého CaCl2 a sodného NaCl. V některých postupech se využívá i redukce oxidu samaritého Sm2O3 elementárním lanthanem.

Sm2O3 + 2 La → 2 Sm + La2O3

Použití a sloučeniny

Malá množství samaria jsou obsažena v didymu, směsi praseodymu a neodymu, požívané pro odkysličování tavenin kovů díky vysoké afinitě lanthanoidů ke kyslíku.

Ve sklářském průmyslu slouží přídavky samaria do skloviny ke zvýšení absorpce skla pro světlo v infračervené oblasti spektra.

Při výrobě optických laserů a maserů se často uplatňují samariem dopované krystaly fluoridu vápenatého CaF2. Katalyzátory na bázi oxidu samaria se v chemickém průmyslu používají pro dehydrataci a dehydrogenaci ethanolu. V jaderné energetice se slitiny s obsahem samaria uplatňují pro zachycování neutronů. Obloukové lampy, sloužící především jako světelné zdroje při natáčení filmů používají elektrody ze slitin s obsahem samaria.

Permanentní magnety

Přestože v současné době jsou nejsilnějšími známými permanentní magnety materiály na bázi neodymu o složení Nd2Fe14B, jsou magnety složené z samaria a kobaltu stále prakticky nejvíce vyráběnými extrémně silnými permanentními magnety.

Složení těchto magnetů je obvykle uváděno jako SmCo5, ale v literatuře se uvádí i materiál Sm2Co17, který by měl mít ještě lepší magnetické vlastnosti. Hlavní předností Sm-Co magnetů je jejich použitelnost v širokém oboru teplot, prakticky jsou bez problémů účinné i za teplot kolem 300 °C, Curieův bod leží až v oblasti 700 – 800 °C. Praktická výroba těchto magnetů započala v 70. letech 20. století. V současné době jsou tyto magnety prakticky používány v počítačové technice v záznamových hlavách harddisků nebo při výrobě malých mikrofonů a reproduktorů ve sluchátkách a mnoha dalších aplikacích.

Nevýhody a rizika:

  • Výrobní cena samariových magnetů je vyšší než u neodymových a to jak pro vyšší cenu samaria i kobaltu ve srovnání s neodymem a železem.
  • Materiál těchto magnetů je poměrně křehký a mohou se snadno rozbít nejen mechanickým úderem, ale i při náhlém vystavení silnému magnetickému poli.
  • Jejich vysoká magnetická síla může způsobit vymazání dat na záznamových mediích počítačů (disketa, CD), ale i na bankovních kartách nebo počítačových monitorech.
  • Přitažlivá síla je tak vysoká, že při náhlém přiblížení magnetu k ferromagnetickému materiálu dokáže způsobit citlivá poranění pokožky nebo svalové tkáně, pokud stojí v mezi magnetem a přitahovaným předmětem.

Literatura

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood - A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy

  • Periodická soustava a tabulka vlastností prvků [1]
  • Chemický vzdělávací portál [2]
  • WebElements (anglicky) [3]
  • Periodická tabulka prvků [4]


Commons nabízí fotografie, obrázky a videa k tématu
Samarium