Multimediaexpo.cz je již 18 let na českém internetu !!
Cauchyovská posloupnost
Z Multimediaexpo.cz
Cauchyovská posloupnost (také bolzanovská posloupnost) je taková posloupnost prvků metrického prostoru, jejíž členy se k sobě blíží libovolně blízko. Každá konvergentní posloupnost je nutně cauchyovská. Pomocí cauchyovské posloupnosti se definuje úplný metrický prostor. V něm cauchyovské posloupnosti a konvergentní posloupnosti splývají. To pak přináší výhodu při určování, zda posloupnost má limitu, neboť stačí ověřit, zda je cauchyovská, bez nutnosti samotnou limitu zjišťovat, jako např. u Banachovy věty o pevném bodě.
Definice
V metrickém prostoru M s metrikou d je posloupnost \(( x_1, x_2, \ldots )\) cauchyovská, pokud pro ni platí tzv. Bolzanova-Cauchyho podmínka:
\(\forall \varepsilon > 0\; \exists n_0 \in \mathbb{N}\; \forall m, n \ge n_0: d(x_m, x_n) < \varepsilon\)
Příklady
- Harmonická posloupnost \(\frac 1 n\) je cauchyovská.
- Každá konvergentní posloupnost v metrickém prostoru je cauchyovská, tzn. Bolzanova-Cauchyho podmínka je nutná podmínka konvergence, nikoli však obecně postačující (viz příklad racionálních čísel). Metrický prostor \(\mathbb{A}\), v kterém má každá cauchyovská posloupnost limitu, která náleží do tohoto metrického prostoru \(\mathbb{A}\), se nazývá úplný metrický prostor.
- Posloupnost racionálních čísel \((1 + 1/n)^n\) je cauchyovská, ale její limita je Eulerovo číslo, což je číslo iracionální. Prostor racionálních čísel (s eukleidovskou metrikou) proto není úplný metrický prostor.
- Každá cauchyovská posloupnost je omezená. Z Bolzano-Weierstrassovy věty pak plyne, že každá cauchyovská posloupnost reálných čísel je už konvergentní, tzn. že prostor reálných čísel je úplný.
Náklady na energie a provoz naší encyklopedie prudce vzrostly. Potřebujeme vaši podporu... Kolik ?? To je na Vás. Náš FIO účet — 2500575897 / 2010 |
---|
Informace o článku.
Článek je převzat z Wikipedie, otevřené encyklopedie, do které přispívají dobrovolníci z celého světa. |