V sobotu 2. listopadu proběhla mohutná oslava naší plnoletosti !!
Multimediaexpo.cz je již 18 let na českém internetu !!

Hustota

Z Multimediaexpo.cz

Verze z 16. 11. 2009, 16:10; Sysop (diskuse | příspěvky)
(rozdíl) ← Starší verze | zobrazit aktuální verzi (rozdíl) | Novější verze → (rozdíl)

Hustota představuje hodnotu dané veličiny vztažené k jednotkovému objemu (bývá také označována jako objemová hustota), jednotkovému obsahu plochy (pak se hovoří o plošné hustotě) nebo jednotkové délce (pak se hovoří o lineární hustotě).

Používá se nejen ve fyzice (např. hustota hmotnosti, objemová hustota částic, hustota elektrického náboje apod.), ale také v jiných oborech vědy (viz např. hustota pravděpodobnosti, hustota zalidnění, optická hustota).

Je-li uveden pojem hustota bez dalšího upřesnění, je tím téměř vždy myšlena objemová hustota hmotnosti.

Stejný význam má veličina objemová hmotnost, zaváděná pro pórovité a sypké látky.

Obsah

Hustota hmotnosti

Hustota hmotnosti (obvykle zkráceně jako hustota) je fyzikální veličina, která vyjadřuje hmotnost objemové jednotky látky. Hustota se značí: ρ [ró]

Značení

Vzorec

Hustota hmotnosti je definována jako podíl hmotnosti <math>m</math> a objemu <math>V</math> tělesa, tzn.

<math>\rho = \frac{m}{V}</math>

Hustota v jednotlivých částech tělesa nemusí být stejná, ale může se měnit. Hustota se také může měnit v čase. (Při studiu tuhých těles lze závislost na čase obvykle zanedbat.) Obecně je tedy hustota funkcí souřadnic a času, tzn. <math>\rho = \rho(x,y,z,t)</math>.

V takovém případě je potřeba sledovat hustotu v různých částech tělesa, přičemž její velikost získáme ze vztahu

<math>\rho = \frac{\Delta m}{\Delta V}</math>

Pokud je těleso popisováno soustavou hmotných bodů, potom lze hmotnostní element <math>\Delta m</math> vyjádřit jako součet hmotností jednotlivých bodů, které se nacházejí v objemu <math>\Delta V</math>, tzn.

<math>\Delta m = \sum_{i\in\Delta V}m_i</math>,

kde <math>m_i</math> je hmotnost <math>i</math>-tého hmotného bodu.

Uvažujeme-li s rovnoměrným rozložením látky v prostoru (např. v mechanice kontinua), lze pro získání hustoty v daném bodě použít vztah

<math>\rho = \frac{\mathrm{d}m}{\mathrm{d}V} = \lim_{\Delta V \to 0}\frac{\Delta m}{\Delta V}</math>,

kde naznačená derivace se bere v tzv. "makroskopickém smyslu", tedy limitní proces končí na elementech objemu, ve kterých se neprojevuje částicová struktura látek.

Ve speciálních případech, kdy se lokální hustota mění skokem a derivace ani ve výše uvedeném makroskopickém smyslu neexistuje (pórovité látky, sypké látky), existuje pouze průměrná hodnota pro větší elementy objemu. V těchto případech se doporučuje nazývat tuto veličinu objemovou hmotností.

Plošná hustota

Hustota jednotky plochy, většinou 1 m², vyjadřovaná v g/m². Uvádí se u papíru, textilií, tkanin a jiných materiálů.

Související články

Externí odkazy